Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 21(6): e3002144, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37289745

RESUMO

Hosts have evolved diverse strategies to respond to microbial infections, including the detection of pathogen-encoded proteases by inflammasome-forming sensors such as NLRP1 and CARD8. Here, we find that the 3CL protease (3CLpro) encoded by diverse coronaviruses, including Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), cleaves a rapidly evolving region of human CARD8 and activates a robust inflammasome response. CARD8 is required for cell death and the release of pro-inflammatory cytokines during SARS-CoV-2 infection. We further find that natural variation alters CARD8 sensing of 3CLpro, including 3CLpro-mediated antagonism rather than activation of megabat CARD8. Likewise, we find that a single nucleotide polymorphism (SNP) in humans reduces CARD8's ability to sense coronavirus 3CLpros and, instead, enables sensing of 3C proteases (3Cpro) from select picornaviruses. Our findings demonstrate that CARD8 is a broad sensor of viral protease activities and suggests that CARD8 diversity contributes to inter- and intraspecies variation in inflammasome-mediated viral sensing and immunopathology.


Assuntos
COVID-19 , Picornaviridae , Humanos , Inflamassomos/metabolismo , Picornaviridae/genética , Picornaviridae/metabolismo , SARS-CoV-2/metabolismo , Inibidores de Proteases , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Adaptadoras de Sinalização CARD/metabolismo
2.
PLoS Negl Trop Dis ; 17(2): e0011055, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36753510

RESUMO

RNA viruses have short generation times and high mutation rates, allowing them to undergo rapid molecular evolution during epidemics. However, the extent of RNA virus phenotypic evolution within epidemics and the resulting effects on fitness and virulence remain mostly unknown. Here, we screened the 2015-2016 Zika epidemic in the Americas for lineage-specific fitness differences. We engineered a library of recombinant viruses representing twelve major Zika virus lineages and used them to measure replicative fitness within disease-relevant human primary cells and live mosquitoes. We found that two of these lineages conferred significant in vitro replicative fitness changes among human primary cells, but we did not find fitness changes in Aedes aegypti mosquitoes. Additionally, we found evidence for elevated levels of positive selection among five amino acid sites that define major Zika virus lineages. While our work suggests that Zika virus may have acquired several phenotypic changes during a short time scale, these changes were relatively moderate and do not appear to have enhanced transmission during the epidemic.


Assuntos
Aedes , Infecção por Zika virus , Zika virus , Animais , Humanos , Zika virus/genética , Genômica , Evolução Molecular , Mosquitos Vetores
3.
Plants (Basel) ; 11(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35161230

RESUMO

High-quality DNA and RNA forms the basis of genomic and genetic investigations. The extraction of DNA and RNA from woody trees, like avocado (Persea americana Mill.), is challenging due to compounds which interact with nucleic acids and influence separation. Previously reported methods of DNA and RNA extraction from avocado have issues of low yield, quality and applicability across different cultivars and tissue types. In the current study, methods have been optimised for high-quality DNA extraction from 40 avocado cultivars and RNA extraction from multiple tissue types, including roots, stem, leaves, flowers and fruits. The method is based on the modification of the cetyltrimethylammonium bromide buffer, centred around the specific optimisation of chemicals, such as sodium dodecyl sulphate, polyvinylpyrrolidone, sodium sulphite, polyethylene glycol and ß-mercaptoethanol. The DNA extraction method yielded high-molecular weight DNA from the leaf tissue of 40 avocado cultivars belonging to Mexican, Guatemalan and West Indian avocado horticultural groups. The method was further optimised for RNA extraction from different avocado plant parts, enabling extraction using amounts as low as ~10 mg of starting material. The DNA and RNA extracted was successfully used for long- and short-read sequencing and gene expression analysis. The methods developed may also be applicable to other recalcitrant plant species.

4.
bioRxiv ; 2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36172130

RESUMO

Hosts have evolved diverse strategies to respond to microbial infections, including the detection of pathogen-encoded proteases by inflammasome-forming sensors such as NLRP1 and CARD8. Here, we find that the 3CL protease (3CL pro ) encoded by diverse coronaviruses, including SARS-CoV-2, cleaves a rapidly evolving region of human CARD8 and activates a robust inflammasome response. CARD8 is required for cell death and the release of pro-inflammatory cytokines during SARS-CoV-2 infection. We further find that natural variation alters CARD8 sensing of 3CL pro , including 3CL pro -mediated antagonism rather than activation of megabat CARD8. Likewise, we find that a single nucleotide polymorphism (SNP) in humans reduces CARD8’s ability to sense coronavirus 3CL pros , and instead enables sensing of 3C proteases (3C pro ) from select picornaviruses. Our findings demonstrate that CARD8 is a broad sensor of viral protease activities and suggests that CARD8 diversity contributes to inter- and intra-species variation in inflammasome-mediated viral sensing and immunopathology.

5.
Elife ; 102021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33410748

RESUMO

The NLRP1 inflammasome is a multiprotein complex that is a potent activator of inflammation. Mouse NLRP1B can be activated through proteolytic cleavage by the bacterial Lethal Toxin (LeTx) protease, resulting in degradation of the N-terminal domains of NLRP1B and liberation of the bioactive C-terminal domain, which includes the caspase activation and recruitment domain (CARD). However, natural pathogen-derived effectors that can activate human NLRP1 have remained unknown. Here, we use an evolutionary model to identify several proteases from diverse picornaviruses that cleave human NLRP1 within a rapidly evolving region of the protein, leading to host-specific and virus-specific activation of the NLRP1 inflammasome. Our work demonstrates that NLRP1 acts as a 'tripwire' to recognize the enzymatic function of a wide range of viral proteases and suggests that host mimicry of viral polyprotein cleavage sites can be an evolutionary strategy to activate a robust inflammatory immune response.


The immune system recognizes disease-causing microbes, such as bacteria and viruses, and removes them from the body before they can cause harm. When the immune system first detects these foreign invaders, a multi-part structure known as the inflammasome launches an inflammatory response to help fight the microbes off. Several sensor proteins can activate the inflammasome, including one in mice called NLRP1B. This protein has evolved a specialized site that can be cut by a bacterial toxin. Once cleaved, this region acts like a biological tripwire and sparks NLRP1B into action, allowing the sensor to activate the inflammasome system. Humans have a similar protein called NLRP1, but it is unclear whether this protein has also evolved a tripwire region that can sense microbial proteins. To answer this question, Tsu, Beierschmitt et al. set out to find whether NLRP1 can be activated by viruses in the Picornaviridae family, which are responsible for diseases like polio, hepatitis A, and the common cold. This revealed that NLRP1 contains a cleavage site for enzymes produced by some, but not all, of the viruses in the picornavirus family. Further experiments confirmed that when a picornavirus enzyme cuts through this region during a viral infection, it triggers NLRP1 to activate the inflammasome and initiate an immune response. The enzymes from different viruses were also found to cleave human NLRP1 at different sites, and the protein's susceptibility to cleavage varied between different animal species. For instance, Tsu, Beierschmitt et al. discovered that NLRP1B in mice is also able to sense picornaviruses, and that different enzymes activate and cleave NLRP1B and NLRP1 to varying degrees: this affected how well the two proteins are expected to be able to sense specific viral infections. This variation suggests that there is an ongoing evolutionary arms-race between viral proteins and the immune system: as viral proteins change and new ones emerge, NLRP1 rapidly evolves new tripwire sites that allow it to sense the infection and launch an inflammatory response. What happens when NLRP1B activates the inflammasome during a viral infection is still an open question. The discovery that mouse NLRP1B shares features with human NLRP1 could allow the development of animal models to study the role of the tripwire in antiviral defenses and the overactive inflammation associated with some viral infections. Understanding the types of viruses that activate the NLRP1 inflammasome, and the outcomes of the resulting immune response, may have implications for future treatments of viral infections.


Assuntos
Inflamassomos/imunologia , Proteínas NLR/imunologia , Proteases Virais/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa