Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 326(6): C1710-C1720, 2024 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-38708524

RESUMO

Ketone bodies (acetoacetate and ß-hydroxybutyrate) are oxidized in skeletal muscle mainly during fasting as an alternative source of energy to glucose. Previous studies suggest that there is a negative relationship between increased muscle ketolysis and muscle glucose metabolism in mice with obesity and/or type 2 diabetes. Therefore, we investigated the connection between increased ketone body exposure and muscle glucose metabolism by measuring the effect of a 3-h exposure to ketone bodies on glucose uptake in differentiated L6 myotubes. We showed that exposure to acetoacetate at a typical concentration (0.2 mM) resulted in increased basal glucose uptake in L6 myotubes, which was dependent on increased membrane glucose transporter type 4 (GLUT4) translocation. Basal and insulin-stimulated glucose uptake was also increased with a concentration of acetoacetate reflective of diabetic ketoacidosis or a ketogenic diet (1 mM). We found that ß-hydroxybutyrate had a variable effect on basal glucose uptake: a racemic mixture of the two ß-hydroxybutyrate enantiomers (d and l) appeared to decrease basal glucose uptake, while 3 mM d-ß-hydroxybutyrate alone increased basal glucose uptake. However, the effects of the ketone bodies individually were not observed when acetoacetate was present in combination with ß-hydroxybutyrate. These results provide insight that will help elucidate the effect of ketone bodies in the context of specific metabolic diseases and nutritional states (e.g., type 2 diabetes and ketogenic diets).NEW & NOTEWORTHY A limited number of studies investigate the effect of ketone bodies at concentrations reflective of both typical fasting and ketoacidosis. We tested a mix of physiologically relevant concentrations of ketone bodies, which allowed us to highlight the differential effects of d- and l-ß-hydroxybutyrate and acetoacetate on skeletal muscle cell glucose uptake. Our findings will assist in better understanding the mechanisms that contribute to muscle insulin resistance and provide guidance on recommendations regarding ketogenic diets.


Assuntos
Ácido 3-Hidroxibutírico , Acetoacetatos , Glucose , Insulina , Fibras Musculares Esqueléticas , Acetoacetatos/metabolismo , Acetoacetatos/farmacologia , Animais , Ácido 3-Hidroxibutírico/farmacologia , Ácido 3-Hidroxibutírico/metabolismo , Glucose/metabolismo , Insulina/metabolismo , Insulina/farmacologia , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Linhagem Celular , Músculo Esquelético/metabolismo , Músculo Esquelético/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Ratos , Corpos Cetônicos/metabolismo , Camundongos
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732106

RESUMO

Type 2 diabetes (T2D) is characterized by muscle metabolic dysfunction that exercise can minimize, but some patients do not respond to an exercise intervention. Myokine secretion is intrinsically altered in patients with T2D, but the role of myokines in exercise resistance in this patient population has never been studied. We sought to determine if changes in myokine secretion were linked to the response to an exercise intervention in patients with T2D. The participants followed a 10-week aerobic exercise training intervention, and patients with T2D were grouped based on muscle mitochondrial function improvement (responders versus non-responders). We measured myokines in serum and cell-culture medium of myotubes derived from participants pre- and post-intervention and in response to an in vitro model of muscle contraction. We also quantified the expression of genes related to inflammation in the myotubes pre- and post-intervention. No significant differences were detected depending on T2D status or response to exercise in the biological markers measured, with the exception of modest differences in expression patterns for certain myokines (IL-1ß, IL-8, IL-10, and IL-15). Further investigation into the molecular mechanisms involving myokines may explain exercise resistance with T2D; however, the role in metabolic adaptations to exercise in T2D requires further investigation.


Assuntos
Diabetes Mellitus Tipo 2 , Terapia por Exercício , Fibras Musculares Esqueléticas , Treinamento Resistido , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Citocinas/metabolismo , Citocinas/sangue , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/terapia , Terapia por Exercício/métodos , Interleucina-10/metabolismo , Interleucina-10/sangue , Interleucina-15/metabolismo , Interleucina-15/sangue , Interleucina-1beta/metabolismo , Interleucina-1beta/sangue , Interleucina-8/metabolismo , Interleucina-8/sangue , Contração Muscular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Miocinas
3.
FASEB J ; 31(2): 814-827, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27871066

RESUMO

Uncoupling protein 3 (UCP3) is highly selectively expressed in skeletal muscle and is known to lower mitochondrial reactive oxygen species and promote fatty acid oxidation; however, the global impact of UCP3 activity on skeletal muscle and whole-body metabolism have not been extensively studied. We utilized untargeted metabolomics to identify novel metabolites that distinguish mice overexpressing UCP3 in muscle, both at rest and after exercise regimens that challenged muscle metabolism, to potentially unmask subtle phenotypes. Male wild-type (WT) and muscle-specific UCP3-overexpressing transgenic (UCP3 Tg) C57BL/6J mice were compared with or without a 5 wk endurance training protocol at rest or after an acute exercise bout (EB). Skeletal muscle, liver, and plasma samples were analyzed by gas chromatography time-of-flight mass spectrometry. Discriminant metabolites were considered if within the top 99th percentile of variable importance measurements obtained from partial least-squares discriminant analysis models. A total of 80 metabolites accurately discriminated UCP3 Tg mice from WT when modeled within a specific exercise condition (i.e., untrained/rested, endurance trained/rested, untrained/EB, and endurance trained/EB). Results revealed that several amino acids and amino acid derivatives in skeletal muscle and plasma of UCP3 Tg mice (e.g., Asp, Glu, Lys, Tyr, Ser, Met) were significantly reduced after an EB; that metabolites associated with skeletal muscle glutathione/Met/Cys metabolism (2-hydroxybutanoic acid, oxoproline, Gly, and Glu) were altered in UCP3 Tg mice across all training and exercise conditions; and that muscle metabolite indices of dehydrogenase activity were increased in UCP3 Tg mice, suggestive of a shift in tissue NADH/NAD+ ratio. The results indicate that mitochondrial UCP3 activity affects metabolism well beyond fatty acid oxidation, regulating biochemical pathways associated with amino acid metabolism and redox status. That select metabolites were altered in liver of UCP3 Tg mice highlights that changes in muscle UCP3 activity can also affect other organ systems, presumably through changes in systemic metabolite trafficking.-Aguer, C., Piccolo, B. D., Fiehn, O., Adams, S. H., Harper, M.-E. A novel amino acid and metabolomics signature in mice overexpressing muscle uncoupling protein 3.


Assuntos
Aminoácidos/metabolismo , Regulação da Expressão Gênica/fisiologia , Metabolômica , Proteína Desacopladora 3/metabolismo , Animais , Animais Geneticamente Modificados , Ciclo do Ácido Cítrico/fisiologia , Ácidos Graxos/sangue , Ácidos Graxos/metabolismo , Masculino , Camundongos , Músculo Esquelético , Oxirredução , Condicionamento Físico Animal , Proteína Desacopladora 3/genética
4.
J Physiol ; 595(6): 2099-2113, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28025824

RESUMO

KEY POINTS: Muscle-derived thermogenesis during acute cold exposure in humans consists of a combination of cold-induced increases in skeletal muscle proton leak and shivering. Daily cold exposure results in an increase in brown adipose tissue oxidative capacity coupled with a decrease in the cold-induced skeletal muscle proton leak and shivering intensity. Improved coupling between electromyography-determined muscle activity and whole-body heat production following cold acclimation suggests a maintenance of ATPase-dependent thermogenesis and decrease in skeletal muscle ATPase independent thermogenesis. Although daily cold exposure did not change the fibre composition of the vastus lateralis, the fibre composition was a strong predictor of the shivering pattern evoked during acute cold exposure. ABSTRACT: We previously showed that 4 weeks of daily cold exposure in humans can increase brown adipose tissue (BAT) volume by 45% and oxidative metabolism by 182%. Surprisingly, we did not find a reciprocal reduction in shivering intensity when exposed to a mild cold (18°C). The present study aimed to determine whether changes in skeletal muscle oxidative metabolism or shivering activity could account for these unexpected findings. Nine men participated in a 4 week cold acclimation intervention (10°C water circulating in liquid-conditioned suit, 2 h day-1 , 5 days week-1 ). Shivering intensity and pattern were measured continuously during controlled cold exposure (150 min at 4 °C) before and after the acclimation. Muscle biopsies from the m. vastus lateralis were obtained to measure oxygen consumption rate and proton leak of permeabilized muscle fibres. Cold acclimation elicited a modest 21% (P < 0.05) decrease in whole-body and m. vastus lateralis shivering intensity. Furthermore, cold acclimation abolished the acute cold-induced increase in proton leak. Although daily cold exposure did not change the fibre composition of the m. vastus lateralis, fibre composition was a strong predictor of the shivering pattern evoked during acute cold. We conclude that muscle-derived thermogenesis during acute cold exposure in humans is not only limited to shivering, but also includes cold-induced increases in proton leak. The efficiency of muscle oxidative phosphorylation improves with cold acclimation, suggesting that reduced muscle thermogenesis occurs through decreased proton leak, in addition to decreased shivering intensity as BAT capacity and activity increase. These changes occur with no net difference in whole-body thermogenesis.


Assuntos
Aclimatação/fisiologia , Tecido Adiposo Marrom/fisiologia , Temperatura Baixa , Músculo Esquelético/fisiologia , Termogênese/fisiologia , Adulto , Humanos , Masculino , Cadeias Pesadas de Miosina/metabolismo , Consumo de Oxigênio , Adulto Jovem
5.
FASEB J ; 29(1): 336-45, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25342132

RESUMO

Insulin resistance may be linked to incomplete fatty acid ß-oxidation and the subsequent increase in acylcarnitine species in different tissues including skeletal muscle. It is not known if acylcarnitines participate in muscle insulin resistance or simply reflect dysregulated metabolism. The aims of this study were to determine whether acylcarnitines can elicit muscle insulin resistance and to better understand the link between incomplete muscle fatty acid ß-oxidation, oxidative stress, inflammation, and insulin-resistance development. Differentiated C2C12, primary mouse, and human myotubes were treated with acylcarnitines (C4:0, C14:0, C16:0) or with palmitate with or without carnitine acyltransferase inhibition by mildronate. Treatment with C4:0, C14:0, and C16:0 acylcarnitines resulted in 20-30% decrease in insulin response at the level of Akt phosphorylation and/or glucose uptake. Mildronate reversed palmitate-induced insulin resistance concomitant with an ∼25% decrease in short-chain acylcarnitine and acetylcarnitine secretion. Although proinflammatory cytokines were not affected under these conditions, oxidative stress was increased by 2-3 times by short- or long-chain acylcarnitines. Acylcarnitine-induced oxidative stress and insulin resistance were reversed by treatment with antioxidants. Results are consistent with the conclusion that incomplete muscle fatty acid ß-oxidation causes acylcarnitine accumulation and associated oxidative stress, raising the possibility that these metabolites play a role in muscle insulin resistance.


Assuntos
Carnitina/análogos & derivados , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Adulto , Animais , Antioxidantes/farmacologia , Carnitina/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Células Cultivadas , Citocinas/metabolismo , Ácidos Graxos/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Camundongos , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Obesidade/metabolismo , Oxirredução , Estresse Oxidativo
6.
J Sports Sci ; 33(18): 1871-80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25760694

RESUMO

The purpose of this study was to determine the substrate oxidation rate and the exercise intensity at which maximal lipid oxidation and ventilatory threshold (VT) occur in obese (BMI: 36.6 ± 6.3 kg · m(-2)) and normal-weight adolescent girls (BMI: 18.7 ± 1.6 kg · m(-2)) aged 14-18 years. Substrate oxidation rate was determined by gas exchange using an incremental field test involving walking. Body composition was assessed by bioelectrical impedance. Carbohydrate oxidation rates were significantly higher in obese than in normal-weight girls at speeds ranging from 4 to 6 km · h(-1) (P < 0.05), whereas no significant differences were observed between groups regarding lipid oxidation rates. The crossover point of substrate utilisation and the VT were significantly lower in obese than in normal-weight adolescents (P < 0.05). Maximal lipid oxidation rate was observed at 46 ± 15 and 53 ± 15 %EVO2max in obese and normal-weight adolescents, respectively. At these intensities, the Lipox(max) was significantly lower in obese than in normal-weight girls (6.7 ± 2.3 versus 8.9 ± 3.5 mg · min(-1) · kg(-1) FFM, P < 0.05, 95% CI: -3.7 to -0.7, d = -0.74). The present results have implications in designing interventions to promote lipid oxidation and energy expenditure during walking in severely obese adolescent girls.


Assuntos
Metabolismo dos Carboidratos , Metabolismo dos Lipídeos , Obesidade/metabolismo , Caminhada/fisiologia , Adolescente , Índice de Massa Corporal , Calorimetria Indireta , Metabolismo Energético , Feminino , Humanos , Oxirredução , Consumo de Oxigênio , Respiração
7.
Biochim Biophys Acta ; 1832(10): 1624-33, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23685312

RESUMO

Muscle insulin resistance is linked to oxidative stress and decreased mitochondrial function. However, the exact cause of muscle insulin resistance is still unknown. Since offspring of patients with type 2 diabetes mellitus (T2DM) are susceptible to developing insulin resistance, they are ideal for studying the early development of insulin resistance. By using primary muscle cells derived from obese non-diabetic subjects with (FH+) or without (FH-) a family history of T2DM, we aimed to better understand the link between mitochondrial function, oxidative stress, and muscle insulin resistance. Insulin-stimulated glucose uptake and glycogen synthesis were normal in FH+ myotubes. Resting oxygen consumption rate was not different between groups. However, proton leak was higher in FH+ myotubes. This was associated with lower ATP content and decreased mitochondrial membrane potential in FH+ myotubes. Surprisingly, mtDNA content was higher in FH+ myotubes. Oxidative stress level was not different between FH+ and FH- groups. Reactive oxygen species content was lower in FH+ myotubes when differentiated in high glucose/insulin (25mM/150pM), which could be due to higher oxidative stress defenses (SOD2 expression and uncoupled respiration). The increased antioxidant defenses and mtDNA content in FH+ myotubes suggest the existence of compensatory mechanisms, which may provisionally prevent the development of insulin resistance.


Assuntos
Fibras Musculares Esqueléticas/enzimologia , Obesidade/metabolismo , Prótons , Superóxido Dismutase/metabolismo , Estudos de Casos e Controles , DNA Mitocondrial/metabolismo , Diabetes Mellitus Tipo 2/genética , Feminino , Predisposição Genética para Doença , Humanos , Resistência à Insulina , Masculino , Potencial da Membrana Mitocondrial , Pessoa de Meia-Idade , Obesidade/enzimologia
8.
FASEB J ; 27(10): 4213-25, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23825224

RESUMO

Exercise substantially improves metabolic health, making the elicited mechanisms important targets for novel therapeutic strategies. Uncoupling protein 3 (UCP3) is a mitochondrial inner membrane protein highly selectively expressed in skeletal muscle. Here we report that moderate UCP3 overexpression (roughly 3-fold) in muscles of UCP3 transgenic (UCP3 Tg) mice acts as an exercise mimetic in many ways. UCP3 overexpression increased spontaneous activity (∼40%) and energy expenditure (∼5-10%) and decreased oxidative stress (∼15-20%), similar to exercise training in wild-type (WT) mice. The increase in complete fatty acid oxidation (FAO; ∼30% for WT and ∼70% for UCP3 Tg) and energy expenditure (∼8% for WT and 15% for UCP3 Tg) in response to endurance training was higher in UCP3 Tg than in WT mice, showing an additive effect of UCP3 and endurance training on these two parameters. Moreover, increases in circulating short-chain acylcarnitines in response to acute exercise in untrained WT mice were absent with training or in UCP3 Tg mice. UCP3 overexpression had the same effect as training in decreasing long-chain acylcarnitines. Outcomes coincided with a reduction in muscle carnitine acetyltransferase activity that catalyzes the formation of acylcarnitines. Overall, results are consistent with the conclusions that circulating acylcarnitines could be used as a marker of incomplete muscle FAO and that UCP3 is a potential target for the treatment of prevalent metabolic diseases in which muscle FAO is affected.


Assuntos
Regulação da Expressão Gênica/fisiologia , Canais Iônicos/metabolismo , Proteínas Mitocondriais/metabolismo , Resistência Física , Animais , Biomarcadores , Ingestão de Alimentos , Metabolismo Energético , Canais Iônicos/genética , Masculino , Camundongos , Camundongos Transgênicos , Proteínas Mitocondriais/genética , Músculo Esquelético/metabolismo , Oxirredução , Estresse Oxidativo , Condicionamento Físico Animal , Proteína Desacopladora 3
9.
Nutrients ; 15(19)2023 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-37836512

RESUMO

In recent years, ketogenic diets and ketone supplements have increased in popularity, particularly as a mechanism to improve exercise performance by modifying energetics. Since the skeletal muscle is a major metabolic and locomotory organ, it is important to take it into consideration when considering the effect of a dietary intervention, and the impact of physical activity on the body. The goal of this review is to summarize what is currently known and what still needs to be investigated concerning the relationship between ketone body metabolism and exercise, specifically in the skeletal muscle. Overall, it is clear that increased exposure to ketone bodies in combination with exercise can modify skeletal muscle metabolism, but whether this effect is beneficial or detrimental remains unclear and needs to be further interrogated before ketogenic diets or exogenous ketone supplementation can be recommended.


Assuntos
Dieta Cetogênica , Cetonas , Cetonas/metabolismo , Exercício Físico/fisiologia , Músculo Esquelético/metabolismo , Suplementos Nutricionais
10.
Physiol Rep ; 11(5): e15634, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36905198

RESUMO

Low-grade inflammation is central to coronary artery disease (CAD) and type 2 diabetes (T2D) and is reduced by exercise training. The objective of this study was to compare the anti-inflammatory potential of moderate-to-vigorous intensity continuous training (MICT) and high-intensity interval training (HIIT) in patients with CAD with or without T2D. The design and setting of this study is based on a secondary analysis of registered randomized clinical trial NCT02765568. Male patients with CAD were randomly assigned to either MICT or HIIT, with subgroups divided according to T2D status (non-T2D-HIIT n = 14 and non-T2D-MICT n = 13; T2D-HIIT n = 6 and T2D-MICT n = 5). The intervention was a 12-week cardiovascular rehabilitation program consisting of either MICT or HIIT (twice weekly sessions) and circulating cytokines measured pre- and post-training as inflammatory markers. The co-occurrence of CAD and T2D was associated with increased plasma IL-8 (p = 0.0331). There was an interaction between T2D and the effect of the training interventions on plasma FGF21 (p = 0.0368) and IL-6 (p = 0.0385), which were further reduced in the T2D groups. An interaction between T2D, training modalities, and the effect of time (p = 0.0415) was detected for SPARC, with HIIT increasing circulating concentrations in the control group, while lowering them in the T2D group, and the inverse occurring with MICT. The interventions also reduced plasma FGF21 (p = 0.0030), IL-6 (p = 0.0101), IL-8 (p = 0.0087), IL-10 (p < 0.0001), and IL-18 (p = 0.0009) irrespective of training modality or T2D status. HIIT and MICT resulted in similar reductions in circulating cytokines known to be increased in the context of low-grade inflammation in CAD patients, an effect more pronounced in patients with T2D for FGF21 and IL-6.


Assuntos
Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Treinamento Intervalado de Alta Intensidade , Humanos , Masculino , Projetos Piloto , Citocinas , Interleucina-6 , Interleucina-8 , Exercício Físico , Treinamento Intervalado de Alta Intensidade/métodos , Inflamação
11.
J Biol Chem ; 286(24): 21865-75, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21515686

RESUMO

The mitochondrial uncoupling proteins 2 and 3 (UCP2 and -3) are known to curtail oxidative stress and participate in a wide array of cellular functions, including insulin secretion and the regulation of satiety. However, the molecular control mechanism(s) governing these proteins remains elusive. Here we reveal that UCP2 and UCP3 contain reactive cysteine residues that can be conjugated to glutathione. We further demonstrate that this modification controls UCP2 and UCP3 function. Both reactive oxygen species and glutathionylation were found to activate and deactivate UCP3-dependent increases in non-phosphorylating respiration. We identified both Cys(25) and Cys(259) as the major glutathionylation sites on UCP3. Additional experiments in thymocytes from wild-type and UCP2 null mice demonstrated that glutathionylation similarly diminishes non-phosphorylating respiration. Our results illustrate that UCP2- and UCP3-mediated state 4 respiration is controlled by reversible glutathionylation. Altogether, these findings advance our understanding of the roles UCP2 and UCP3 play in modulating metabolic efficiency, cell signaling, and oxidative stress processes.


Assuntos
Glutationa/química , Canais Iônicos/genética , Proteínas Mitocondriais/genética , Animais , Células Cultivadas , Cisteína/química , Glutationa/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Modelos Biológicos , Mioblastos/citologia , Estresse Oxidativo , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio , Timo/citologia , Timo/metabolismo , Proteína Desacopladora 2 , Proteína Desacopladora 3
12.
Biochim Biophys Acta ; 1812(4): 423-30, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21172433

RESUMO

Insulin resistance in type 2 diabetes (T2D) is associated with intramuscular lipid (IMCL) accumulation. To determine whether impaired lipid oxidation is involved in IMCL accumulation, we measured expression of genes involved in mitochondrial oxidative metabolism or biogenesis, mitochondrial content and palmitate beta-oxidation before and after palmitate overload (600µM for 16h), in myotubes derived from healthy subjects and obese T2D patients. Mitochondrial gene expression, content and network were not different between groups. Basal palmitate beta-oxidation was not affected in T2D myotubes, whereas after 16h of palmitate pre-treatment, T2D myotubes in contrast to control myotubes, showed an inability to increase palmitate beta-oxidation (p<0.05). Interestingly, acetyl-CoA carboxylase (ACC) phosphorylation was increased with a tendency for statistical significance after palmitate pre-treatment in control myotubes (p=0.06) but not in T2D myotubes which can explain their inability to increase palmitate beta-oxidation after palmitate overload. To determine whether the activation of the AMP activated protein kinase (AMPK)-ACC pathway was able to decrease lipid content in T2D myotubes, cells were treated with AICAR and metformin. These AMPK activators had no effect on ACC and AMPK phosphorylation in T2D myotubes as well as on lipid content, whereas AICAR, but not metformin, increased AMPK phosphorylation in control myotubes. Interestingly, metformin treatment and mitochondrial inhibition by antimycin induced increased lipid content in control myotubes. We conclude that T2D myotubes display an impaired capacity to respond to metabolic stimuli.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Obesidade/metabolismo , Palmitatos/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA Carboxilase/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Células Cultivadas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Humanos , Hipoglicemiantes/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metformina/farmacologia , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/patologia , Oxirredução , Fosforilação , Músculo Quadríceps/metabolismo , Músculo Quadríceps/patologia , Ribonucleotídeos/farmacologia
13.
Biochem J ; 437(2): 301-11, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21554247

RESUMO

UCP3 (uncoupling protein-3) mitigates mitochondrial ROS (reactive oxygen species) production, but the mechanisms are poorly understood. Previous studies have also examined UCP3 effects, including decreased ROS production, during metabolic states when fatty acid oxidation is high (e.g. a fasting state). However, the role of UCP3 when carbohydrate oxidation is high (e.g. fed state) has remained largely unexplored. In the present study, we show that mitochondrial-bound HK (hexokinase) II curtails oxidative stress and enhances aerobic metabolism of glucose in the fed state in a UCP3-dependent manner. Genetic knockout or inhibition of UCP3 significantly decreased mitochondrial-bound HKII. Furthermore, UCP3 was required for the HKII-mediated decrease in mitochondrial ROS emission. Intriguingly, the UCP3-mediated modulation of mitochondria-associated HKII was only observed in cells cultured under high-glucose conditions. UCP3 was required to maintain high rates of aerobic metabolism in high-glucose-treated cells and in muscle of fed mice. Deficiency in UCP3 resulted in a metabolic shift that favoured anaerobic glycolytic metabolism, increased glucose uptake and increased sensitivity to oxidative challenge. PET (positron emission tomography) of [18F]fluoro-deoxyglucose uptake confirmed these findings in UCP3-knockout and wild-type mice. Collectively, our findings link the anti-oxidative and metabolic functions of UCP3 through a surprising molecular connection with mitochondrial-bound HKII.


Assuntos
Respiração Celular/efeitos dos fármacos , Hexoquinase/metabolismo , Canais Iônicos/fisiologia , Mitocôndrias Musculares/metabolismo , Proteínas Mitocondriais/fisiologia , Animais , Alimentos , Glucose/metabolismo , Glicólise , Células HEK293 , Humanos , Canais Iônicos/deficiência , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/deficiência , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Proteína Desacopladora 3
14.
Front Physiol ; 13: 1040809, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36479347

RESUMO

Myokines are peptides and proteins secreted by skeletal muscle cells, into the interstitium, or in the blood. Their regulation may be dependent or independent of muscle contraction to induce a variety of metabolic effects. Numerous myokines have been implicated in influencing energy metabolism via AMP-activated protein kinase (AMPK) signalling. As AMPK is centrally involved in glucose and lipid metabolism, it is important to understand how myokines influence its signalling, and vice versa. Such insight will better elucidate the mechanism of metabolic regulation during exercise and at rest. This review encompasses the latest research conducted on the relationship between AMPK signalling and myokines within skeletal muscles via autocrine or paracrine signalling.

15.
Food Chem Toxicol ; 170: 113505, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36328215

RESUMO

Exposure to bisphenol A (BPA) is associated with insulin resistance and type 2 diabetes (T2D). Since muscle insulin resistance is the primary defect in T2D, we aimed to determine whether BPA alters glucose metabolism in L6 muscle cells. L6 or L6-GLUT4-myc cells were exposed to 1-104 nM BPA or the vehicle (0.1% DMSO) for 7 days. BPA at 103-104 nM significantly decreased the levels of the muscle differentiation markers troponin- T and myosin heavy chain 3. Insulin-stimulated phosphorylation of Akt and GSK3, insulin-stimulated glucose uptake, and insulin-stimulated GLUT4 translocation were significantly decreased with 103-104 nM BPA. Basal glucose uptake and glycolysis (extracellular acidification rates measured by Seahorse XFe96) were increased with 103-104 nM BPA. Levels of ROS detoxifying enzymes were increased with BPA >10 nM, while catalase activity was increased with 103-104 nM BPA. However, BPA did not induce oxidative stress (measured by protein carbonylation and lipid peroxidation) nor mitochondrial dysfunction. The effects of BPA on basal glucose uptake and catalase activity, but not on insulin sensitivity, were restored when estrogen receptors (ERs) were inhibited with ICI. These findings suggest that high concentrations of BPA increase muscle glucose uptake through the ERs but induce insulin resistance through another pathway.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Humanos , Glucose/metabolismo , Receptores de Estrogênio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Catalase/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Insulina/metabolismo , Fosforilação , Transportador de Glucose Tipo 4/metabolismo
16.
Toxicol Rep ; 9: 487-498, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35345859

RESUMO

Under insulin-stimulated conditions, skeletal muscle is the largest glucose consumer in the body. Mitochondrial dysfunction and damage to this tissue from oxidative stress are linked to the pathogenesis of type 2 diabetes. Environmental exposure to dichlorodiphenyltrichloroethane (DDT) and its metabolite, 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE), has been associated with the incidence of type 2 diabetes as well as altered oxidative stress and mitochondrial dysfunction in non-muscle tissues. We hypothesized that energy metabolism and insulin sensitivity in skeletal muscle will be altered with exposure to DDT and DDE. In this pilot study, mitochondrial function was measured in permeabilized muscle fibers from Sprague-Dawley rats after one week of exposure to a single injection of DDT (40 µg/kg), a dose comparable to DDT levels in the diets of the Inuit of Northern Canada. The levels of oxidative phosphorylation chain complexes and ROS detoxification enzymes were measured in muscle tissue from these specimens. This acute in vivo exposure to DDT decreased muscle mitochondrial function by 45% without affecting the levels of mitochondrial oxidative phosphorylation chain complexes nor levels of ROS detoxification enzymes. To isolate the effects of DDT and DDE exposure on muscle, L6 myotubes were exposed to DDT or DDE (0, 10, 100, 1000, 10 000 nM) for 24 h. Only very high concentrations of DDT and DDE (1 000 - 10 000 nM) altered maximal respiration with only DDT altering basal glucose uptake in L6 myotubes. This did not alter levels of ROS detoxification enzymes or malondialdehyde (MDA) in L6 myotubes. Altogether, acute exposure to environmentally relevant doses of DDT resulted in muscle mitochondrial dysfunction in vivo in rats, but not when muscle cells were directly exposed to the pollutant or its metabolite.

17.
Cell Metab ; 33(5): 939-956.e8, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33770509

RESUMO

Poor maternal diet increases the risk of obesity and type 2 diabetes in offspring, adding to the ever-increasing prevalence of these diseases. In contrast, we find that maternal exercise improves the metabolic health of offspring, and here, we demonstrate that this occurs through a vitamin D receptor-mediated increase in placental superoxide dismutase 3 (SOD3) expression and secretion. SOD3 activates an AMPK/TET signaling axis in fetal offspring liver, resulting in DNA demethylation at the promoters of glucose metabolic genes, enhancing liver function, and improving glucose tolerance. In humans, SOD3 is upregulated in serum and placenta from physically active pregnant women. The discovery of maternal exercise-induced cross talk between placenta-derived SOD3 and offspring liver provides a central mechanism for improved offspring metabolic health. These findings may lead to novel therapeutic approaches to limit the transmission of metabolic disease to the next generation.


Assuntos
Exercício Físico , Placenta/metabolismo , Superóxido Dismutase/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Células Cultivadas , Desmetilação do DNA , Dieta Hiperlipídica , Feminino , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Gravidez , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Receptores de Calcitriol/metabolismo , Transdução de Sinais , Superóxido Dismutase/genética
18.
J Sports Sci ; 28(3): 281-9, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20077277

RESUMO

In this pilot study, we wished to determine whether a 5-month multidisciplinary programme of a combined dietary-nutritional education-exercise intervention would have favourable effects on the health status of 18 obese adolescent girls. Before and after the clinical intervention, body composition and habitual physical activity were assessed by bioelectrical impedance and accelerometry, respectively. Aerobic fitness and substrate utilization were determined by gas exchange using an incremental field test that mimics habitual conditions. Despite a significantly (P < 0.001) greater loss of fat mass (-8.7 +/- 4.1 kg) compared with fat-free mass (-2.8 +/- 2.2 kg), energy expenditure at rest decreased by 9% following the intervention. Maximal oxygen consumption [Vdot]O2max related to fat-free mass increased by 7% (P < 0.05), whereas substrate utilization during exercise did not change following the intervention. Moderate and intense physical activity increased by 15% (+20 min . day(-1); P < 0.05) and 45% (+25 min . day(-1); P < 0.01), respectively. A significant relationship was observed between change in habitual physical activity and change in .[Vdot]O2max fat-free mass (r = 0.56, P = 0.01). The present multidisciplinary programme enhanced the loss of fat mass relative to fat-free mass but not sufficiently so to prevent a decline in metabolic rate during rest. Our results suggest a coupling in the improvement of aerobic fitness and habitual physical activity in obese adolescent girls, and hence an improvement in behaviour in relation to physical activity.


Assuntos
Composição Corporal , Terapia por Exercício , Exercício Físico/fisiologia , Obesidade/terapia , Consumo de Oxigênio , Aptidão Física , Redução de Peso , Tecido Adiposo , Adolescente , Metabolismo Basal , Compartimentos de Líquidos Corporais , Metabolismo dos Carboidratos , Feminino , Humanos , Metabolismo dos Lipídeos , Obesidade/dietoterapia , Obesidade/fisiopatologia , Oxirredução , Projetos Piloto , Comportamento Sedentário
19.
Mol Cell Endocrinol ; 499: 110580, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31536778

RESUMO

Bisphenol A (BPA) is an environmental pollutant that has been associated with adverse health effects including skeletal muscle insulin resistance, a major contributor to the pathogenesis of type 2 diabetes (T2D). Early mitochondrial dysfunction and oxidative stress are linked to impaired glucose metabolism in skeletal muscle. In this study, we investigated the effects of BPA on skeletal muscle mitochondrial function and insulin sensitivity. L6 myotubes were treated with BPA (1 nM-105 nM) during the last 24 h of differentiation. Following exposure to 105 nM of BPA, resting and maximal oxygen consumption rates were decreased, whereas mitochondrial proton leak was increased. Overall metabolic activity, measured by redox ability, was decreased in L6 myotubes exposed to 105 nM of BPA. At this concentration, insulin-stimulated glucose uptake was increased, which corresponded to an increased phosphorylation of the insulin signaling protein Akt, and increased glycolysis measured by extracellular acidification rate (ECAR). Acute BPA exposure did not alter levels of oxidative stress markers in muscle cells, but significantly increased mitochondrial proton leak, which is known to be involved in decreased ROS production. The effects of BPA on glucose uptake, but not mitochondrial function, were reversed by the use of an estrogen receptor antagonist. These results suggest that acute exposure of L6 myotubes at only high concentrations of BPA alters glucose metabolism, which is likely a compensatory response to reduced mitochondrial energy production capacity.


Assuntos
Compostos Benzidrílicos/efeitos adversos , Glucose/metabolismo , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/citologia , Fenóis/efeitos adversos , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Resistência à Insulina , Mitocôndrias/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Consumo de Oxigênio/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos
20.
Toxicology ; 445: 152600, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32976960

RESUMO

PURPOSE: The environmental endocrine disruptors, bisphenol A (BPA) and bisphenol S (BPS) are associated with the development of type 2 diabetes. We aim to study the effects of BPA or BPS exposure on adipokine expression in human adipose tissue and on adipocyte glucose uptake. METHODS: Human subcutaneous adipose tissue was treated for 24 or 72 h with environmentally-relevant and supraphysiological concentrations of BPA or BPS (1-104 nM). Following exposure, gene expression of proinflammatory cytokines, adipokines, and estrogen receptors was measured in adipose tissue. Glucose uptake and the insulin signalling pathway were analyzed in isolated adipocytes following adipose tissue culture with BPA for 24 h. RESULTS: Adipose tissue treated with BPA for 24 h had reduced expression of the proinflammatory genes (IL6, IL1B, TNFA) and adipokines (ADIPOQ, FABP4). BPA and BPS had no effect on the expression of other proinflammatory genes (IL33), adipokines (LEP), or receptors (ESR1, ESR2) after 72-h exposure. Adipose tissue treated with environmentally-relevant concentrations of BPA for 24 h had reduced insulin-stimulated glucose uptake, without altered gene and protein levels of key insulin signalling pathway markers. CONCLUSIONS: We found that human adipose tissue treated with environmentally-relevant concentrations of BPA for 24 h, but not BPS, reduced expression of proinflammatory genes and adipokines. Furthermore, BPA reduced glucose uptake in adipocytes independently of insulin signalling. Such mechanisms can contribute to the development of insulin resistance associated with BPA exposure.


Assuntos
Adipocinas/antagonistas & inibidores , Tecido Adiposo/efeitos dos fármacos , Compostos Benzidrílicos/toxicidade , Estrogênios não Esteroides/toxicidade , Glucose/antagonistas & inibidores , Fenóis/farmacologia , Fenóis/toxicidade , Sulfonas/farmacologia , Adipocinas/biossíntese , Tecido Adiposo/metabolismo , Adulto , Idoso , Sobrevivência Celular , Relação Dose-Resposta a Droga , Feminino , Expressão Gênica , Glucose/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa