Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34083252

RESUMO

Amacrine cells are interneurons composing the most diverse cell class in the mammalian retina. They help encode visual features such as edges or directed motion by mediating excitatory and inhibitory interactions between input (i.e. bipolar) and output (i.e. ganglion) neurons in the inner plexiform layer (IPL). Like other brain regions, the retina also contains glial cells that contribute to neurotransmitter uptake, metabolic regulation and neurovascular control. Here, we report that in mouse retina (of either sex), an abundant, though previously unstudied inhibitory amacrine cell is coupled directly to Müller glia. Electron microscopic reconstructions of this amacrine type revealed chemical synapses with known retinal cell types and extensive associations with Müller glia, the processes of which often completely ensheathe the neurites of this amacrine cell. Microinjecting small tracer molecules into the somas of these amacrine cells led to selective labelling of nearby Müller glia, leading us to suggest the name "Müller glia-coupled amacrine cell," or MAC. Our data also indicate that MACs release glycine at conventional chemical synapses, and viral retrograde transsynaptic tracing from the dorsal lateral geniculate nucleus (dLGN) showed selective connections between MACs and a subpopulation of RGC types. Visually-evoked responses revealed a strong preference for light increments; these "ON" responses were primarily mediated by excitatory chemical synaptic input and direct electrical coupling with other cells. This initial characterization of the MAC provides the first evidence for neuron-glia coupling in the mammalian retina and identifies the MAC as a potential link between inhibitory processing and glial function.Significance Statement:Gap junctions between pairs of neurons or glial cells are commonly found throughout the nervous system and play multiple roles, including electrical coupling and metabolic exchange. In contrast, gap junctions between neurons and glia cells have rarely been reported and are poorly understood. Here we report the first evidence for neuron-glia coupling in the mammalian retina, specifically between an abundant (but previously unstudied) inhibitory interneuron and Müller glia. Moreover, viral tracing, optogenetics and serial electron microscopy provide new information about the neuron's synaptic partners and physiological responses.

2.
Cell Rep ; 42(1): 112006, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36680773

RESUMO

Neurons make converging and diverging synaptic connections with distinct partner types. Whether synapses involving separate partners demonstrate similar or distinct structural motifs is not yet well understood. We thus used serial electron microscopy in mouse retina to map output synapses of cone bipolar cells (CBCs) and compare their structural arrangements across bipolar types and postsynaptic partners. Three presynaptic configurations emerge-single-ribbon, ribbonless, and multiribbon synapses. Each CBC type exploits these arrangements in a unique combination, a feature also found among rabbit ON CBCs. Though most synapses are dyads, monads and triads are also seen. Altogether, mouse CBCs exhibit at least six motifs, and each CBC type uses these in a stereotypic pattern. Moreover, synapses between CBCs and particular partner types appear biased toward certain motifs. Our observations reveal synaptic strategies that diversify the output within and across CBC types, potentially shaping the distinct functions of retinal microcircuits.


Assuntos
Interneurônios , Retina , Animais , Camundongos , Coelhos , Retina/fisiologia , Células Bipolares da Retina , Sinapses , Microscopia Eletrônica
3.
Methods Mol Biol ; 337: 15-26, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16929935

RESUMO

Overexpression of proteins is a powerful way to determine their function. Until recently, the low efficiency of neuronal transfection has made it difficult to use overexpression and structure-function studies to investigate the role of neuronal proteins in their native environment. The development of neurotrophic viral systems has overcome the obstacle of low efficiency and allows for unprecedented opportunities to use biochemical and electrophysiological techniques to assess the effects of overexpressing wild-type or mutant proteins in neurons. Here, a general protocol for the production of replication-deficient Semliki Forest virus constructs directing the overexpression of proteins of interest in cultured mammalian neurons is described.


Assuntos
Vírus Defeituosos/genética , Vírus Defeituosos/fisiologia , Expressão Gênica , Neurônios/metabolismo , Proteínas/genética , Animais , Células Cultivadas , Clonagem Molecular , Cricetinae , DNA/genética , DNA Complementar/genética , Plasmídeos/genética , Reação em Cadeia da Polimerase , Vírus da Floresta de Semliki/fisiologia , Transcrição Gênica , Vírion , Ativação Viral , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa