Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 605(7908): 76-83, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35508775

RESUMO

Living cilia stir, sweep and steer via swirling strokes of complex bending and twisting, paired with distinct reverse arcs1,2. Efforts to mimic such dynamics synthetically rely on multimaterial designs but face limits to programming arbitrary motions or diverse behaviours in one structure3-8. Here we show how diverse, complex, non-reciprocal, stroke-like trajectories emerge in a single-material system through self-regulation. When a micropost composed of photoresponsive liquid crystal elastomer with mesogens aligned oblique to the structure axis is exposed to a static light source, dynamic dances evolve as light initiates a travelling order-to-disorder transition front, transiently turning the structure into a complex evolving bimorph that twists and bends via multilevel opto-chemo-mechanical feedback. As captured by our theoretical model, the travelling front continuously reorients the molecular, geometric and illumination axes relative to each other, yielding pathways composed from series of twisting, bending, photophobic and phototropic motions. Guided by the model, here we choreograph a wide range of trajectories by tailoring parameters, including illumination angle, light intensity, molecular anisotropy, microstructure geometry, temperature and irradiation intervals and duration. We further show how this opto-chemo-mechanical self-regulation serves as a foundation for creating self-organizing deformation patterns in closely spaced microstructure arrays via light-mediated interpost communication, as well as complex motions of jointed microstructures, with broad implications for autonomous multimodal actuators in areas such as soft robotics7,9,10, biomedical devices11,12 and energy transduction materials13, and for fundamental understanding of self-regulated systems14,15.

2.
Nature ; 592(7854): 386-391, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33854248

RESUMO

The fundamental topology of cellular structures-the location, number and connectivity of nodes and compartments-can profoundly affect their acoustic1-4, electrical5, chemical6,7, mechanical8-10 and optical11 properties, as well as heat1,12, fluid13,14 and particle transport15. Approaches that harness swelling16-18, electromagnetic actuation19,20 and mechanical instabilities21-23 in cellular materials have enabled a variety of interesting wall deformations and compartment shape alterations, but the resulting structures generally preserve the defining connectivity features of the initial topology. Achieving topological transformation presents a distinct challenge for existing strategies: it requires complex reorganization, repacking, and coordinated bending, stretching and folding, particularly around each node, where elastic resistance is highest owing to connectivity. Here we introduce a two-tiered dynamic strategy that achieves systematic reversible transformations of the fundamental topology of cellular microstructures, which can be applied to a wide range of materials and geometries. Our approach requires only exposing the structure to a selected liquid that is able to first infiltrate and plasticize the material at the molecular scale, and then, upon evaporation, form a network of localized capillary forces at the architectural scale that 'zip' the edges of the softened lattice into a new topological structure, which subsequently restiffens and remains kinetically trapped. Reversibility is induced by applying a mixture of liquids that act separately at the molecular and architectural scales (thus offering modular temporal control over the softening-evaporation-stiffening sequence) to restore the original topology or provide access to intermediate modes. Guided by a generalized theoretical model that connects cellular geometries, material stiffness and capillary forces, we demonstrate programmed reversible topological transformations of various lattice geometries and responsive materials that undergo fast global or localized deformations. We then harness dynamic topologies to develop active surfaces with information encryption, selective particle trapping and bubble release, as well as tunable mechanical, chemical and acoustic properties.

3.
Proc Natl Acad Sci U S A ; 120(34): e2308804120, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37579173

RESUMO

The next-generation semiconductors and devices, such as halide perovskites and flexible electronics, are extremely sensitive to water, thus demanding highly effective protection that not only seals out water in all forms (vapor, droplet, and ice), but simultaneously provides mechanical flexibility, durability, transparency, and self-cleaning. Although various solid-state encapsulation methods have been developed, no strategy is available that can fully meet all the above requirements. Here, we report a bioinspired liquid-based encapsulation strategy that offers protection from water without sacrificing the operational properties of the encapsulated materials. Using halide perovskite as a model system, we show that damage to the perovskite from exposure to water is drastically reduced when it is coated by a polymer matrix with infused hydrophobic oil. With a combination of experimental and simulation studies, we elucidated the fundamental transport mechanisms of ultralow water transmission rate that stem from the ability of the infused liquid to fill-in and reduce defects in the coating layer, thus eliminating the low-energy diffusion pathways, and to cause water molecules to diffuse as clusters, which act together as an excellent water permeation barrier. Importantly, the presence of the liquid, as the central component in this encapsulation method provides a unique possibility of reversing the water transport direction; therefore, the lifetime of enclosed water-sensitive materials could be significantly extended via replenishing the hydrophobic oils regularly. We show that the liquid encapsulation platform presented here has high potential in providing not only water protection of the functional device but also flexibility, optical transparency, and self-healing of the coating layer, which are critical for a variety of applications, such as in perovskite solar cells and bioelectronics.

4.
Proc Natl Acad Sci U S A ; 120(31): e2303928120, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37494398

RESUMO

Although sensor technologies have allowed us to outperform the human senses of sight, hearing, and touch, the development of artificial noses is significantly behind their biological counterparts. This largely stems from the sophistication of natural olfaction, which relies on both fluid dynamics within the nasal anatomy and the response patterns of hundreds to thousands of unique molecular-scale receptors. We designed a sensing approach to identify volatiles inspired by the fluid dynamics of the nose, allowing us to extract information from a single sensor (here, the reflectance spectra from a mesoporous one-dimensional photonic crystal) rather than relying on a large sensor array. By accentuating differences in the nonequilibrium mass-transport dynamics of vapors and training a machine learning algorithm on the sensor output, we clearly identified polar and nonpolar volatile compounds, determined the mixing ratios of binary mixtures, and accurately predicted the boiling point, flash point, vapor pressure, and viscosity of a number of volatile liquids, including several that had not been used for training the model. We further implemented a bioinspired active sniffing approach, in which the analyte delivery was performed in well-controlled 'inhale-exhale' sequences, enabling an additional modality of differentiation and reducing the duration of data collection and analysis to seconds. Our results outline a strategy to build accurate and rapid artificial noses for volatile compounds that can provide useful information such as the composition and physical properties of chemicals, and can be applied in a variety of fields, including disease diagnosis, hazardous waste management, and healthy building monitoring.


Assuntos
Nariz , Olfato , Humanos , Nariz Eletrônico , Aprendizado de Máquina , Gases
5.
Proc Natl Acad Sci U S A ; 119(43): e2211042119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36252006

RESUMO

Various forms of ecological monitoring and disease diagnosis rely upon the detection of amphiphiles, including lipids, lipopolysaccharides, and lipoproteins, at ultralow concentrations in small droplets. Although assays based on droplets' wettability provide promising options in some cases, their reliance on the measurements of surface and bulk properties of whole droplets (e.g., contact angles, surface tensions) makes it difficult to monitor trace amounts of these amphiphiles within small-volume samples. Here, we report a design principle in which self-assembled monolayer-functionalized microstructured surfaces coated with silicone oil create locally disordered regions within a droplet's contact lines to effectively concentrate amphiphiles within the areas that dominate the droplet static friction. Remarkably, such surfaces enable the ultrasensitive, naked-eye detection of amphiphiles through changes in the droplets' sliding angles, even when the concentration is four to five orders of magnitude below their critical micelle concentration. We develop a thermodynamic model to explain the partitioning of amphiphiles at the contact line by their cooperative association within the disordered, loosely packed regions of the self-assembled monolayer. Based on this local analyte concentrating effect, we showcase laboratory-on-a-chip surfaces with positionally dependent pinning forces capable of both detecting industrially and biologically relevant amphiphiles (e.g., bacterial endotoxins), as well as sorting aqueous droplets into discrete groups based on their amphiphile concentrations. Furthermore, we demonstrate that the sliding behavior of amphiphile-laden aqueous droplets provides insight into the amphiphile's effective length, thereby allowing these surfaces to discriminate between analytes with highly disparate molecular sizes.


Assuntos
Micelas , Óleos de Silicone , Lipopolissacarídeos , Tensão Superficial , Água , Molhabilidade
6.
J Am Chem Soc ; 146(32): 22103-22121, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39101642

RESUMO

Conventional catalyst preparative methods commonly entail the impregnation, precipitation, and/or immobilization of nanoparticles on their supports. While convenient, such methods do not readily afford the ability to control collective ensemble-like nanoparticle properties, such as nanoparticle proximity, placement, and compartmentalization. In this Perspective, we illustrate how incorporating colloidal templating into catalyst design for thermocatalysis confers synthetic advantages to facilitate new catalytic investigations and augment catalytic performance, focusing on three colloid-templated catalyst structures: 3D macroporous structures, hierarchical macro-mesoporous structures, and discrete hollow nanoreactors. We outline how colloidal templating decouples the nanoparticle and support formation steps to devise modular catalyst platforms that can be flexibly tuned at different length scales. Of particular interest is the raspberry colloid templating (RCT) method which confers high thermomechanical stability by partially embedding nanoparticles within its support, while retaining high levels of reactant accessibility. We illustrate how the high modularity of the RCT approach allows one to independently control collective nanoparticle properties, such as nanoparticle proximity and localization, without concomitant changes to other catalytic descriptors that would otherwise confound analyses of their catalytic performance. We next discuss how colloidal templating can be employed to achieve spatially disparate active site functionalization while directing reactant transport within the catalyst structure to enhance selectivity in multistep catalytic cascades. Throughout this Perspective, we highlight developments in advanced characterization that interrogate transport phenomena and/or derive new insights into these catalyst structures. Finally, we offer our outlook on the future roles, applications, and challenges of colloidal templating in catalyst design for thermocatalysis.

7.
Nat Mater ; 22(12): 1548-1555, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37723337

RESUMO

Aerophilic surfaces immersed underwater trap films of air known as plastrons. Plastrons have typically been considered impractical for underwater engineering applications due to their metastable performance. Here, we describe aerophilic titanium alloy (Ti) surfaces with extended plastron lifetimes that are conserved for months underwater. Long-term stability is achieved by the formation of highly rough hierarchically structured surfaces via electrochemical anodization combined with a low-surface-energy coating produced by a fluorinated surfactant. Aerophilic Ti surfaces drastically reduce blood adhesion and, when submerged in water, prevent adhesion of bacteria and marine organisms such as barnacles and mussels. Overall, we demonstrate a general strategy to achieve the long-term stability of plastrons on aerophilic surfaces for previously unattainable underwater applications.

8.
Phys Rev Lett ; 132(5): 058203, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38364153

RESUMO

Recently, there is much interest in droplet condensation on soft or liquid or liquidlike substrates. Droplets can deform soft and liquid interfaces resulting in a wealth of phenomena not observed on hard, solid surfaces (e.g., increased nucleation, interdroplet attraction). Here, we describe a unique collective motion of condensate water droplets that emerges spontaneously when a solid substrate is covered with a thin oil film. Droplets move first in a serpentine, self-avoiding fashion before transitioning to circular motions. We show that this self-propulsion (with speeds in the 0.1-1 mm s^{-1} range) is fueled by the interfacial energy release upon merging with newly condensed but much smaller droplets. The resultant collective motion spans multiple length scales from submillimeter to several centimeters, with potentially important heat-transfer and water-harvesting applications.

9.
Soft Matter ; 20(37): 7502-7511, 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39268682

RESUMO

Hierarchically structured supraparticles can be produced by drying droplets of colloidal suspensions. Using binary suspensions provides degrees of structural and functional control beyond those possible for single components, while remaining tractable for fundamental mechanistic studies. Here, we implement evaporative co-assembly of two distinct particle types - 'large' polystyrene microparticles and 'small' inorganic oxide nanoparticles (silica, titania, zirconia, or ceria) - dried on superhydrophobic surfaces to produce bowl-shaped supraparticles. We extend this method to raspberry colloid templating, in which the binary suspension consists of titania nanoparticles together with gold-decorated polystyrene colloids. Following removal of the polymer particles, we demonstrate catalytic oxidative coupling of methanol to methyl formate using the resulting mesoporous supraparticles, showcasing their practical application.

10.
Chem Rev ; 122(9): 8758-8808, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35254051

RESUMO

The development of new catalyst materials for energy-efficient chemical synthesis is critical as over 80% of industrial processes rely on catalysts, with many of the most energy-intensive processes specifically using heterogeneous catalysis. Catalytic performance is a complex interplay of phenomena involving temperature, pressure, gas composition, surface composition, and structure over multiple length and time scales. In response to this complexity, the integrated approach to heterogeneous dilute alloy catalysis reviewed here brings together materials synthesis, mechanistic surface chemistry, reaction kinetics, in situ and operando characterization, and theoretical calculations in a coordinated effort to develop design principles to predict and improve catalytic selectivity. Dilute alloy catalysts─in which isolated atoms or small ensembles of the minority metal on the host metal lead to enhanced reactivity while retaining selectivity─are particularly promising as selective catalysts. Several dilute alloy materials using Au, Ag, and Cu as the majority host element, including more recently introduced support-free nanoporous metals and oxide-supported nanoparticle "raspberry colloid templated (RCT)" materials, are reviewed for selective oxidation and hydrogenation reactions. Progress in understanding how such dilute alloy catalysts can be used to enhance selectivity of key synthetic reactions is reviewed, including quantitative scaling from model studies to catalytic conditions. The dynamic evolution of catalyst structure and composition studied in surface science and catalytic conditions and their relationship to catalytic function are also discussed, followed by advanced characterization and theoretical modeling that have been developed to determine the distribution of minority metal atoms at or near the surface. The integrated approach demonstrates the success of bridging the divide between fundamental knowledge and design of catalytic processes in complex catalytic systems, which can accelerate the development of new and efficient catalytic processes.


Assuntos
Ligas , Óxidos , Catálise , Domínio Catalítico , Metais , Oxirredução , Óxidos/química
11.
Nature ; 559(7712): 77-82, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29942075

RESUMO

Developing adaptive materials with geometries that change in response to external stimuli provides fundamental insights into the links between the physical forces involved and the resultant morphologies and creates a foundation for technologically relevant dynamic systems1,2. In particular, reconfigurable surface topography as a means to control interfacial properties3 has recently been explored using responsive gels4, shape-memory polymers5, liquid crystals6-8 and hybrid composites9-14, including magnetically active slippery surfaces12-14. However, these designs exhibit a limited range of topographical changes and thus a restricted scope of function. Here we introduce a hierarchical magneto-responsive composite surface, made by infiltrating a ferrofluid into a microstructured matrix (termed ferrofluid-containing liquid-infused porous surfaces, or FLIPS). We demonstrate various topographical reconfigurations at multiple length scales and a broad range of associated emergent behaviours. An applied magnetic-field gradient induces the movement of magnetic nanoparticles suspended in the ferrofluid, which leads to microscale flow of the ferrofluid first above and then within the microstructured surface. This redistribution changes the initially smooth surface of the ferrofluid (which is immobilized by the porous matrix through capillary forces) into various multiscale hierarchical topographies shaped by the size, arrangement and orientation of the confining microstructures in the magnetic field. We analyse the spatial and temporal dynamics of these reconfigurations theoretically and experimentally as a function of the balance between capillary and magnetic pressures15-19 and of the geometric anisotropy of the FLIPS system. Several interesting functions at three different length scales are demonstrated: self-assembly of colloidal particles at the micrometre scale; regulated flow of liquid droplets at the millimetre scale; and switchable adhesion and friction, liquid pumping and removal of biofilms at the centimetre scale. We envision that FLIPS could be used as part of integrated control systems for the manipulation and transport of matter, thermal management, microfluidics and fouling-release materials.

12.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33472972

RESUMO

Disordered nanostructures with correlations on the scale of visible wavelengths can show angle-independent structural colors. These materials could replace dyes in some applications because the color is tunable and resists photobleaching. However, designing nanostructures with a prescribed color is difficult, especially when the application-cosmetics or displays, for example-requires specific component materials. A general approach to solving this constrained design problem is modeling and optimization: Using a model that predicts the color of a given system, one optimizes the model parameters under constraints to achieve a target color. For this approach to work, the model must make accurate predictions, which is challenging because disordered nanostructures have multiple scattering. To address this challenge, we develop a Monte Carlo model that simulates multiple scattering of light in disordered arrangements of spherical particles or voids. The model produces quantitative agreement with measurements when we account for roughness on the surface of the film, particle polydispersity, and wavelength-dependent absorption in the components. Unlike discrete numerical simulations, our model is parameterized in terms of experimental variables, simplifying the connection between simulation and fabrication. To demonstrate this approach, we reproduce the color of the male mountain bluebird (Sialia currucoides) in an experimental system, using prescribed components and a microstructure that is easy to fabricate. Finally, we use the model to find the limits of angle-independent structural colors for a given system. These results enable an engineering design approach to structural color for many different applications.

13.
Proc Natl Acad Sci U S A ; 118(25)2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34140412

RESUMO

Biological systems have a remarkable capability of synthesizing multifunctional materials that are adapted for specific physiological and ecological needs. When exploring structure-function relationships related to multifunctionality in nature, it can be a challenging task to address performance synergies, trade-offs, and the relative importance of different functions in biological materials, which, in turn, can hinder our ability to successfully develop their synthetic bioinspired counterparts. Here, we investigate such relationships between the mechanical and optical properties in a multifunctional biological material found in the highly protective yet conspicuously colored exoskeleton of the flower beetle, Torynorrhina flammea Combining experimental, computational, and theoretical approaches, we demonstrate that a micropillar-reinforced photonic multilayer in the beetle's exoskeleton simultaneously enhances mechanical robustness and optical appearance, giving rise to optical damage tolerance. Compared with plain multilayer structures, stiffer vertical micropillars increase stiffness and elastic recovery, restrain the formation of shear bands, and enhance delamination resistance. The micropillars also scatter the reflected light at larger polar angles, enhancing the first optical diffraction order, which makes the reflected color visible from a wider range of viewing angles. The synergistic effect of the improved angular reflectivity and damage localization capability contributes to the optical damage tolerance. Our systematic structural analysis of T. flammea's different color polymorphs and parametric optical and mechanical modeling further suggest that the beetle's microarchitecture is optimized toward maximizing the first-order optical diffraction rather than its mechanical stiffness. These findings shed light on material-level design strategies utilized in biological systems for achieving multifunctionality and could thus inform bioinspired material innovations.


Assuntos
Exoesqueleto/anatomia & histologia , Exoesqueleto/fisiologia , Besouros/anatomia & histologia , Besouros/fisiologia , Flores/parasitologia , Fenômenos Ópticos , Animais , Fenômenos Biomecânicos , Modelos Biológicos , Fótons , Pigmentação , Espalhamento de Radiação
14.
Proc Natl Acad Sci U S A ; 118(32)2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34341109

RESUMO

Unlike crystalline atomic and ionic solids, texture development due to crystallographically preferred growth in colloidal crystals is less studied. Here we investigate the underlying mechanisms of the texture evolution in an evaporation-induced colloidal assembly process through experiments, modeling, and theoretical analysis. In this widely used approach to obtain large-area colloidal crystals, the colloidal particles are driven to the meniscus via the evaporation of a solvent or matrix precursor solution where they close-pack to form a face-centered cubic colloidal assembly. Via two-dimensional large-area crystallographic mapping, we show that the initial crystal orientation is dominated by the interaction of particles with the meniscus, resulting in the expected coalignment of the close-packed direction with the local meniscus geometry. By combining with crystal structure analysis at a single-particle level, we further reveal that, at the later stage of self-assembly, however, the colloidal crystal undergoes a gradual rotation facilitated by geometrically necessary dislocations (GNDs) and achieves a large-area uniform crystallographic orientation with the close-packed direction perpendicular to the meniscus and parallel to the growth direction. Classical slip analysis, finite element-based mechanical simulation, computational colloidal assembly modeling, and continuum theory unequivocally show that these GNDs result from the tensile stress field along the meniscus direction due to the constrained shrinkage of the colloidal crystal during drying. The generation of GNDs with specific slip systems within individual grains leads to crystallographic rotation to accommodate the mechanical stress. The mechanistic understanding reported here can be utilized to control crystallographic features of colloidal assemblies, and may provide further insights into crystallographically preferred growth in synthetic, biological, and geological crystals.

15.
Acc Chem Res ; 55(13): 1809-1820, 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35700186

RESUMO

ConspectusInverse opals (IOs) are highly interconnected three-dimensional macroporous structures with applications in a variety of disciplines from optics to catalysis. For instance, when the pore size is on the scale of the wavelength of visible light, IOs exhibit structural color due to diffraction and interference of light rather than due to absorption by pigments, making these structures valuable as nonfading paints and colorants. When IO pores are in an ordered arrangement, the IO is a 3D photonic crystal, a structure with a plethora of interesting optical properties that can be used in a multitude of applications, from sensors to lasers. IOs also have interesting fluidic properties that arise from the re-entrant geometry of the pores, making them excellent candidates for colorimetric sensors based on fluid surface tension. Metal oxide IOs, in particular, can also be photo- and thermally catalytically active due to the catalytic activity of the background matrix material or of functional nanoparticles embedded within the structure.Evaporation-induced self-assembly of sacrificial particles has been developed as a scalable method for forming IOs. The pore size and shape, surface chemistry, matrix material, and the macroscopic shape of the IO, as well as the inclusion of functional components, can be designed through the choice of deposition conditions such as temperature and humidity, types and concentrations of components in the self-assembly mixture, and the postassembly processing. These parameters allow researchers to tune the optical, mechanical, and thermal transport properties of IOs for optimum functionality.In this Account, we focus on experimental and theoretical studies to understand the self-assembly process and properties of metal oxide IOs without (bare) and with (hybrid) plasmonic or catalytic metal nanoparticles incorporated. Several synthetic approaches are first presented, together with a discussion of the various forces involved in the assembly process. The visualization of the deposition front with time-lapse microscopy is then discussed together with analytical theory and numerical simulations to determine the conditions needed for the deposition of a continuous IO film. Subsequently, we present high-resolution scanning electron microscopy (SEM) of assembled colloids over large areas, which provides a detailed view of the evolution of the assembly process, showing that the organization of the colloids is initially dictated by the meniscus of the evaporating suspension on the substrate, but that gradually all grains rotate to occupy the thermodynamically most favorable orientation. High-resolution 3D transmission electron microscopy (TEM) is then presented together with analysis of the wetting of the templating colloids by the matrix precursor to provide a detailed picture of the embedding of metallic nanoparticles at the pore-matrix interface. Finally, the resulting properties and applications in optics, wetting, and catalysis are discussed, concluding with an outlook on the future of self-assembled metal-oxide-based IOs.

16.
Langmuir ; 39(19): 6705-6712, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37075012

RESUMO

Liquid-liquid heat exchangers that operate in marine environments are susceptible to biofouling, which decreases the overall heat exchange between hot and cold liquids by increasing the conduction resistance. Recently, micro/nanostructured oil-impregnated surfaces have been shown to significantly reduce biofouling. However, their potential as a heat exchanger material has not been studied. Neither is it obvious since the oil used for impregnation increases the wall thickness and the associated conduction resistance. Here, by conducting extensive field and laboratory studies supported by theoretical modeling of heat transfer in oil-infused heat exchanger tubes, we report the synergistic benefits of micro/nanostructured oil-impregnated surfaces for reducing biofouling while maintaining good heat transfer. These benefits justify the use of lubricant-infused surfaces as heat exchanger materials, in particular in marine environments.

17.
Proc Natl Acad Sci U S A ; 117(8): 3953-3959, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32029591

RESUMO

Next-generation photonics envisions circuitry-free, rapidly reconfigurable systems powered by solitonic beams of self-trapped light and their particlelike interactions. Progress, however, has been limited by the need for reversibly responsive materials that host such nonlinear optical waves. We find that repeatedly switchable self-trapped visible laser beams, which exhibit strong pairwise interactions, can be generated in a photoresponsive hydrogel. Through comprehensive experiments and simulations, we show that the unique nonlinear conditions arise when photoisomerization of spiropyran substituents in pH-responsive poly(acrylamide-co-acrylic acid) hydrogel transduces optical energy into mechanical deformation of the 3D cross-linked hydrogel matrix. A Gaussian beam self-traps when localized isomerization-induced contraction of the hydrogel and expulsion of water generates a transient waveguide, which entraps the optical field and suppresses divergence. The waveguide is erased and reformed within seconds when the optical field is sequentially removed and reintroduced, allowing the self-trapped beam to be rapidly and repeatedly switched on and off at remarkably low powers in the milliwatt regime. Furthermore, this opto-chemo-mechanical transduction of energy mediated by the 3D cross-linked hydrogel network facilitates pairwise interactions between self-trapped beams both in the short range where there is significant overlap of their optical fields, and even in the long range--over separation distances of up to 10 times the beam width--where such overlap is negligible.

18.
J Am Chem Soc ; 144(1): 219-227, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34965115

RESUMO

Light-responsive, spiropyran-functionalized hydrogels have been used to create reversibly photoactuated structures for applications ranging from microfluidics to nonlinear optics. Tailoring a spiropyran-functionalized hydrogel system for a particular application requires an understanding of how co-monomer composition affects the switching dynamics of the spiropyran chromophore. Such gels are frequently designed to be responsive to different stimuli such as light, temperature, and pH. The coupling of these influences can significantly alter spiropyran behavior in ways not currently well understood. To better understand the influence of responsive co-monomers on the spiropyran isomerization dynamics, we use UV-vis spectroscopy and time-dependent fluorescence intensity measurements to study spiropyran-modified hydrogels polymerized from four common hydrogel precursors of different pH and temperature responsivity: acrylamide, acrylic acid, N-isopropylacrylamide, and 2-(dimethylamino)ethyl methacrylate. In acidic and neutral gels, we observe unusual nonmonotonic, triexponential fluorescence dynamics under 405 nm irradiation that cannot be explicated by either the established spiropyran-merocyanine interconversion model or hydrolysis. To explain these results, we introduce an analytical model of spiropyran interconversions that includes H-aggregated merocyanine and its light-triggered disaggregation under 405 nm irradiation. This model provides an excellent fit to the observed fluorescence dynamics and elucidates exactly how creating an acidic internal gel environment promotes the fast and complete conversion of the hydrophilic merocyanine speciesto the hydrophobic spiropyran form, which is desired in most light-sensitive hydrogel actuators. This can be achieved by incorporating acrylic acid monomers and by minimizing the aggregate concentration. Beyond spiropyran-functionalized gel actuators, these conclusions are particularly critical for nonlinear optical computing applications.

19.
Nat Mater ; 20(2): 237-241, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32958878

RESUMO

The predominantly deep-sea hexactinellid sponges are known for their ability to construct remarkably complex skeletons from amorphous hydrated silica. The skeletal system of one such species of sponge, Euplectella aspergillum, consists of a square-grid-like architecture overlaid with a double set of diagonal bracings, creating a chequerboard-like pattern of open and closed cells. Here, using a combination of finite element simulations and mechanical tests on 3D-printed specimens of different lattice geometries, we show that the sponge's diagonal reinforcement strategy achieves the highest buckling resistance for a given amount of material. Furthermore, using an evolutionary optimization algorithm, we show that our sponge-inspired lattice geometry approaches the optimum material distribution for the design space considered. Our results demonstrate that lessons learned from the study of sponge skeletal systems can be exploited for the realization of square lattice geometries that are geometrically optimized to avoid global structural buckling, with implications for improved material use in modern infrastructural applications.

20.
Soft Matter ; 18(32): 6032-6042, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35924409

RESUMO

Surfaces with tunable microscale textures are vital in a large variety of technological applications, including heat transfer, antifouling and adhesion. To facilitate such broad-scale use, there is a need to create surfaces that undergo reconfigurable changes in topology and thus, enable switchable functionality. To date, there is a relative dearth of methods for engineering surfaces that can be actuated to change topography over a range of length scales, and hence, form tunable hierarchically structured layers. Combining modeling and experiments, we design a geometrically patterned, thermo-responsive poly (N-isopropylacrylamide) gel film that undergoes controllable hierarchical changes in topology with changes in temperature. At the bottom, the film is covalently bound to a solid, curved substrate; at the top, the film encompasses longitudinal rectangular ridges that are oriented perpendicular to the underlying cylindrical curves. At temperatures below lower critical solution temperature (LCST), the swollen gel exhibits 3D variations in polymer density and thickness defined by the gel's top and bottom topography. As the temperature rises above LCST, the interplay between the upper ridges and lower curves in the gel drives non-uniform, directional solvent transport, the nucleation and propagation of a phase-separated higher-density skin layer, and the resulting pressure buildup within the film. These different, interacting kinetic processes lead to an instability, which produces transient microscopic blisters in the film. Through simulations, we show how tuning the width of the ridges modifies the propagation of a skin layer and creates localized pressure build-up points, which enables control over the emergence, distribution, and alignment of the microscopic blisters. Additionally, we provide a simple argument to predict the size of such microscopic features. Experiments confirm our predictions and further highlight how our computational model enables the rational design of topographical transitions in these tunable films. The development of actuatable, hierarchically structured films provides new routes for achieving switchable functionality in actuators, drug release systems and adhesives.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa