Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biochem Cell Biol ; 102(5): 373-384, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38843556

RESUMO

Altered mitochondrial structure and function are implicated in the functional decline of skeletal muscle. Numerous cytoskeletal proteins are known to affect mitochondrial homeostasis, but this complex network is still being unraveled. Here, we investigated mitochondrial alterations in mice lacking the cytoskeletal adapter protein, XIN (XIN-/-). XIN-/- and wild-type littermate male and female mice were fed a chow or high-fat diet (HFD; 60% kcal fat) for 8 weeks before analyses of their skeletal muscles were conducted. Immuno-electron microscopy (EM) and immunofluorescence staining revealed XIN in the mitochondria and peri-mitochondrial areas, as well as the myoplasm. Intermyofibrillar mitochondria in chow-fed XIN-/- mice were notably different from wild-type (large, and/or swollen in appearance). Succinate dehydrogenase and Cytochrome Oxidase IV staining indicated greater evidence of mitochondrial enzyme activity in XIN-/- mice. No difference in body mass gains or glucose handling was observed between cohorts with HFD. However, EM revealed significantly greater mitochondrial density with evident structural abnormalities (swelling, reduced cristae density) in XIN-/- mice. Absolute Complex I and II-supported respiration was not different between groups, but relative to mitochondrial density, was significantly lower in XIN-/-. These results provide the first evidence for a role of XIN in maintaining mitochondrial morphology and function.


Assuntos
Camundongos Knockout , Mitocôndrias Musculares , Músculo Esquelético , Animais , Camundongos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Masculino , Feminino , Mitocôndrias Musculares/metabolismo , Mitocôndrias Musculares/ultraestrutura , Dieta Hiperlipídica/efeitos adversos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Camundongos Endogâmicos C57BL , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Ciclo Celular
2.
Chem Sci ; 10(24): 6072-6082, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31360412

RESUMO

Soluble amyloid beta assemblies (Aß n ) are neurotoxic and play a central role in the early phases of the pathogenesis cascade leading to Alzheimer's disease. However, the current knowledge about the molecular determinants of Aß n toxicity is at best scant. Here, we comparatively analyze Aß n prepared in the absence or presence of a catechin library that modulates cellular toxicity. By combining solution NMR with dynamic light scattering, fluorescence spectroscopy, electron microscopy, wide-angle X-ray diffraction and cell viability assays, we identify a cluster of unique molecular signatures that distinguish toxic vs. nontoxic Aß assemblies. These include the exposure of a hydrophobic surface spanning residues 17-28 and the concurrent shielding of the highly charged N-terminus. We show that the combination of these two dichotomous structural transitions promotes the colocalization and insertion of ß-sheet rich Aß n into the membrane, compromising membrane integrity. These previously elusive toxic surfaces mapped here provide an unprecedented foundation to establish structure-toxicity relationships of Aß assemblies.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa