Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34588308

RESUMO

Receptor clustering plays a key role in triggering cellular activation, but the relationship between the spatial configuration of clusters and the elicitation of downstream intracellular signals remains poorly understood. We developed a DNA-origami-based system that is easily adaptable to other cellular systems and enables rich interrogation of responses to a variety of spatially defined inputs. Using a chimeric antigen receptor (CAR) T cell model system with relevance to cancer therapy, we studied signaling dynamics at single-cell resolution. We found that the spatial arrangement of receptors determines the ligand density threshold for triggering and encodes the temporal kinetics of signaling activities. We also showed that signaling sensitivity of a small cluster of high-affinity ligands is enhanced when surrounded by nonstimulating low-affinity ligands. Our results suggest that cells measure spatial arrangements of ligands, translate that information into distinct signaling dynamics, and provide insights into engineering immunotherapies.


Assuntos
DNA/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Antígenos/imunologia , Linhagem Celular Tumoral , Humanos , Imunoterapia/métodos , Células Jurkat , Cinética , Ligantes , Ativação Linfocitária/imunologia
2.
J Struct Biol ; 209(2): 107437, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31866389

RESUMO

Cryo-EM samples prepared using traditional methods often suffer from too few particles, poor particle distribution, strongly biased orientation, or damage from the air-water interface. Here we report that functionalization of graphene oxide (GO) coated grids with amino groups concentrates samples on the grid with improved distribution and orientation. By introducing a PEG spacer, particles are kept away from both the GO surface and the air-water interface, protecting them from potential denaturation.


Assuntos
Microscopia Crioeletrônica/métodos , Grafite/química , Imagem Individual de Molécula/métodos , Água/química , Aminas/química , Polietilenoglicóis/química
3.
J Exp Biol ; 219(Pt 2): 161-7, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26792326

RESUMO

Hypertrophic cardiomyopathy is the most frequently occurring inherited cardiovascular disease, with a prevalence of more than one in 500 individuals worldwide. Genetically acquired dilated cardiomyopathy is a related disease that is less prevalent. Both are caused by mutations in the genes encoding the fundamental force-generating protein machinery of the cardiac muscle sarcomere, including human ß-cardiac myosin, the motor protein that powers ventricular contraction. Despite numerous studies, most performed with non-human or non-cardiac myosin, there is no clear consensus about the mechanism of action of these mutations on the function of human ß-cardiac myosin. We are using a recombinantly expressed human ß-cardiac myosin motor domain along with conventional and new methodologies to characterize the forces and velocities of the mutant myosins compared with wild type. Our studies are extending beyond myosin interactions with pure actin filaments to include the interaction of myosin with regulated actin filaments containing tropomyosin and troponin, the roles of regulatory light chain phosphorylation on the functions of the system, and the possible roles of myosin binding protein-C and titin, important regulatory components of both cardiac and skeletal muscles.


Assuntos
Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/fisiopatologia , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/fisiopatologia , Mutação/genética , Miosinas Ventriculares/genética , Fenômenos Biomecânicos/genética , Humanos , Modelos Biológicos
4.
J Am Chem Soc ; 137(3): 1008-11, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25578373

RESUMO

In biomolecules, bifurcated H-bonds typically involve the interaction of two donor protons with the two lone pairs of oxygen. Here, we present direct NMR evidence for a bifurcated H-bonding arrangement involving nitrogen as the acceptor atom. Specifically, the H-bond network comprises the Nδ1 atom of histidine and both the backbone N-H and side-chain Oγ-H of threonine within the conserved TXXH motif of ankyrin repeat (AR) proteins. Identification of the H-bonding partners is achieved via solution NMR H-bond scalar coupling (HBC) and H/D isotope shift experiments. Quantitative determination of (2h)J(NN) HBCs supports that Thr N-H···Nδ1 His H-bonds within internal repeats are stronger (∼4 Hz) than in the solvent exposed C-terminal AR (∼2 Hz). In agreement, pKa values for the buried histidines bridging internal ARs are several units lower than those of the C-terminus. Quantum chemical calculations show that the relevant (2h)J and (1h)J couplings are dominated by the Fermi contact interaction. Finally, a Thr-to-Val replacement, which eliminates the Thr Oγ-H···Nδ1 His H-bond and decreases protein stability, results in a 25% increase in (2h)J(NN), attributed to optimization of the Val N-H···Nδ1 His H-bond. Overall, the results provide new insights into the H-bonding properties of histidine, a refined structural rationalization for the folding cooperativity of AR proteins, and a challenging benchmark for the calculation of HBCs.


Assuntos
Repetição de Anquirina , Anquirinas/química , Ressonância Magnética Nuclear Biomolecular , Ligação de Hidrogênio , Modelos Moleculares , Teoria Quântica
5.
Biophys J ; 107(1): 220-32, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24988356

RESUMO

Although progress has been made to determine the native fold of a polypeptide from its primary structure, the diversity of pathways that connect the unfolded and folded states has not been adequately explored. Theoretical and computational studies predict that proteins fold through parallel pathways on funneled energy landscapes, although experimental detection of pathway diversity has been challenging. Here, we exploit the high translational symmetry and the direct length variation afforded by linear repeat proteins to directly detect folding through parallel pathways. By comparing folding rates of consensus ankyrin repeat proteins (CARPs), we find a clear increase in folding rates with increasing size and repeat number, although the size of the transition states (estimated from denaturant sensitivity) remains unchanged. The increase in folding rate with chain length, as opposed to a decrease expected from typical models for globular proteins, is a clear demonstration of parallel pathways. This conclusion is not dependent on extensive curve-fitting or structural perturbation of protein structure. By globally fitting a simple parallel-Ising pathway model, we have directly measured nucleation and propagation rates in protein folding, and have quantified the fluxes along each path, providing a detailed energy landscape for folding. This finding of parallel pathways differs from results from kinetic studies of repeat-proteins composed of sequence-variable repeats, where modest repeat-to-repeat energy variation coalesces folding into a single, dominant channel. Thus, for globular proteins, which have much higher variation in local structure and topology, parallel pathways are expected to be the exception rather than the rule.


Assuntos
Repetição de Anquirina , Dobramento de Proteína , Sequência de Aminoácidos , Dicroísmo Circular , Dados de Sequência Molecular , Proteínas Musculares/química , Proteínas Nucleares/química , Análise Serial de Proteínas , Proteínas Repressoras/química
6.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562860

RESUMO

We describe design principles for accurate folding of three-dimensional DNA origami. To evaluate design rules, we reduced the problem of DNA strand routing to the known problem of shortest-path finding in a weighted graph. To score candidate DNA strand routes we used a thermodynamic model that accounts for enthalpic and entropic contributions of initial binding, hybridization, and DNA loop closure. We encoded and analyzed new and previously reported design heuristics. Using design principles emerging from this analysis, we redesigned and fabricated multiple shapes and compared their folding accuracy using electrophoretic mobility analysis and electron microscopy imaging. We demonstrate accurate folding can be achieved by optimizing staple routes using our model, and provide a computational framework for applying our methodology to any design.

7.
J Am Chem Soc ; 133(15): 6020-7, 2011 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-21446709

RESUMO

The application of hydrostatic pressure generally leads to protein unfolding, implying, in accordance with Le Chatelier's principle, that the unfolded state has a smaller molar volume than the folded state. However, the origin of the volume change upon unfolding, ΔV(u), has yet to be determined. We have examined systematically the effects of protein size and sequence on the value of ΔV(u) using as a model system a series of deletion variants of the ankyrin repeat domain of the Notch receptor. The results provide strong evidence in support of the notion that the major contributing factor to pressure effects on proteins is their imperfect internal packing in the folded state. These packing defects appear to be specifically localized in the 3D structure, in contrast to the uniformly distributed effects of temperature and denaturants that depend upon hydration of exposed surface area upon unfolding. Given its local nature, the extent to which pressure globally affects protein structure can inform on the degree of cooperativity and long-range coupling intrinsic to the folded state. We also show that the energetics of the protein's conformations can significantly modulate their volumetric properties, providing further insight into protein stability.


Assuntos
Repetição de Anquirina , Proteínas de Bactérias/química , Halorhodospira halophila/química , Receptores Notch/química , Sequência de Aminoácidos , Modelos Moleculares , Dados de Sequência Molecular , Desnaturação Proteica , Dobramento de Proteína , Termodinâmica
8.
Nat Biotechnol ; 39(3): 378-386, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077960

RESUMO

Correct reconstruction of macromolecular structure by cryo-electron microscopy (cryo-EM) relies on accurate determination of the orientation of single-particle images. For small (<100 kDa) DNA-binding proteins, obtaining particle images with sufficiently asymmetric features to correctly guide alignment is challenging. We apply DNA origami to construct molecular goniometers-instruments that precisely orient objects-and use them to dock a DNA-binding protein on a double-helix stage that has user-programmable tilt and rotation angles. We construct goniometers with 14 different stage configurations to orient and visualize the protein just above the cryo-EM grid surface. Each goniometer has a distinct barcode pattern that we use during particle classification to assign angle priors to the bound protein. We use goniometers to obtain a 6.5-Å structure of BurrH, an 82-kDa DNA-binding protein whose helical pseudosymmetry prevents accurate image orientation using traditional cryo-EM. Our approach should be adaptable to other DNA-binding proteins as well as small proteins fused to DNA-binding domains.


Assuntos
Microscopia Crioeletrônica/métodos , Proteínas de Ligação a DNA/ultraestrutura , DNA/química , Proteínas de Ligação a DNA/química , Conformação de Ácido Nucleico , Conformação Proteica
9.
Protein Sci ; 30(1): 168-186, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33058322

RESUMO

A collection of programs is presented to analyze the thermodynamics of folding of linear repeat proteins using a 1D Ising model to determine intrinsic folding and interfacial coupling free energies. Expressions for folding transitions are generated for a series of constructs with different repeat numbers and are globally fitted to transitions for these constructs. These programs are designed to analyze Ising parameters for capped homopolymeric consensus repeat constructs as well as heteropolymeric constructs that contain point substitutions, providing a rigorous framework for analysis of the effects of mutation on intrinsic and directional (i.e., N- vs. C-terminal) interfacial coupling free-energies. A bootstrap analysis is provided to estimate parameter uncertainty as well as correlations among fitted parameters. Rigorous statistical analysis is essential for interpreting fits using the complex models required for Ising analysis of repeat proteins, especially heteropolymeric repeat proteins. Programs described here are available at https://github.com/barricklab-at-jhu/Ising_programs.


Assuntos
Substituição de Aminoácidos , Modelos Moleculares , Mutação Puntual , Proteínas , Análise de Sequência de Proteína , Software , Proteínas/química , Proteínas/genética , Sequências Repetitivas de Aminoácidos
10.
Synth Biol (Oxf) ; 3(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30984875

RESUMO

DNA origami, a method for constructing nanoscale objects, relies on a long single strand of DNA to act as the 'scaffold' to template assembly of numerous short DNA oligonucleotide 'staples'. The ability to generate custom scaffold sequences can greatly benefit DNA origami design processes. Custom scaffold sequences can provide better control of the overall size of the final object and better control of low-level structural details, such as locations of specific base pairs within an object. Filamentous bacteriophages and related phagemids can work well as sources of custom scaffold DNA. However, scaffolds derived from phages require inclusion of multi-kilobase DNA sequences in order to grow in host bacteria, and those sequences cannot be altered or removed. These fixed-sequence regions constrain the design possibilities of DNA origami. Here, we report the construction of a novel phagemid, pScaf, to produce scaffolds that have a custom sequence with a much smaller fixed region of 393 bases. We used pScaf to generate new scaffolds ranging in size from 1512 to 10 080 bases and demonstrated their use in various DNA origami shapes and assemblies. We anticipate our pScaf phagemid will enhance development of the DNA origami method and its future applications.

11.
Cell Rep ; 11(6): 910-920, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25937279

RESUMO

Cardiomyopathies due to mutations in human ß-cardiac myosin are a significant cause of heart failure, sudden death, and arrhythmia. To understand the underlying molecular basis of changes in the contractile system's force production due to such mutations and search for potential drugs that restore force generation, an in vitro assay is necessary to evaluate cardiac myosin's ensemble force using purified proteins. Here, we characterize the ensemble force of human α- and ß-cardiac myosin isoforms and those of ß-cardiac myosins carrying left ventricular non-compaction (M531R) and dilated cardiomyopathy (S532P) mutations using a utrophin-based loaded in vitro motility assay and new filament-tracking software. Our results show that human α- and ß-cardiac myosin, as well as the mutants, show opposite mechanical and enzymatic phenotypes with respect to each other. We also show that omecamtiv mecarbil, a previously discovered cardiac-specific myosin activator, increases ß-cardiac myosin force generation.


Assuntos
Mutação/genética , Bibliotecas de Moléculas Pequenas/farmacologia , Miosinas Ventriculares/genética , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Fenômenos Biomecânicos , Cardiomiopatias/genética , Bovinos , Humanos , Camundongos , Modelos Biológicos , Modelos Moleculares , Software , Estatística como Assunto , Ureia/análogos & derivados , Ureia/farmacologia , Utrofina/metabolismo
12.
Structure ; 19(3): 349-60, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21397186

RESUMO

Cooperativity is a defining feature of protein folding, but its thermodynamic and structural origins are not completely understood. By constructing consensus ankyrin repeat protein arrays that have nearly identical sequences, we quantify cooperativity by resolving stability into intrinsic and interfacial components. Heteronuclear NMR and CD spectroscopy show that these constructs adopt ankyrin repeat structures. Applying a one-dimensional Ising model to a series of constructs chosen to maximize information content in unfolding transitions, we quantify stabilities of the terminal capping repeats, and resolve the effects of denaturant into intrinsic and interfacial components. Reversible thermal denaturation resolves interfacial and intrinsic free energies into enthalpic, entropic, and heat capacity terms. Intrinsic folding is entropically disfavored, whereas interfacial interaction is entropically favored and attends a decrease in heat capacity. These results suggest that helix formation and backbone ordering occurs upon intrinsic folding, whereas hydrophobic desolvation occurs upon interfacial interaction, contributing to cooperativity.


Assuntos
Repetição de Anquirina , Análise Serial de Proteínas/métodos , Dobramento de Proteína , Proteínas/metabolismo , Termodinâmica , Sequência de Aminoácidos , Dicroísmo Circular , Entropia , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Desnaturação Proteica , Estabilidade Proteica , Estrutura Secundária de Proteína , Proteínas/química , Proteínas/genética , Solubilidade , Temperatura
13.
Methods Enzymol ; 455: 95-125, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19289204

RESUMO

The linear "Ising" model, which has been around for nearly a century, treats the behavior of linear arrays of repetitive, interacting subunits. Linear "repeat-proteins" have only been described in the last decade or so, and their folding energies have only been characterized very recently. Owing to their repetitive structures, linear repeat-proteins are particularly well suited for analysis by the nearest-neighbor Ising formalism. After briefly describing the historical origins and applications of the Ising model to biopolymers, and introducing repeat protein structure, this chapter will focus on the application of the linear Ising model to repeat proteins. When applied to homopolymers, the model can be represented and applied in a fairly simplified form. When applied to heteropolymers, where differences in energies among individual subunits (i.e. repeats) must be included, some (but not all) of this simplicity is lost. Derivations of the linear Ising model for both homopolymer and heteropolymer repeat-proteins will be presented. With the increased complexity required for analysis of heteropolymeric repeat proteins, the ability to resolve different energy terms from experimental data can be compromised. Thus, a simple matrix approach will be developed to help inform on the degree to which different thermodynamic parameters can be extracted from a particular set of unfolding curves. Finally, we will describe the application of these models to analyze repeat-protein folding equilibria, focusing on simplified repeat proteins based on "consensus" sequence information.


Assuntos
Modelos Moleculares , Dobramento de Proteína , Proteínas/química , Proteínas/metabolismo , Animais , Modelos Lineares , Peptídeos/análise , Peptídeos/química , Peptídeos/metabolismo , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa