Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Med Oncol ; 41(5): 117, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630325

RESUMO

Among the most prevalent forms of cancer are breast, lung, colon-rectum, and prostate cancers, and breast cancer is a major global health challenge, contributing to 2.26 million cases with approximately 685,000 deaths worldwide in 2020 alone, typically beginning in the milk ducts or lobules that produce and transport milk during lactation and it is becoming challenging to treat as the tissues are developing resistance, which makes urgent calls for new multitargeted drugs. The multitargeted drug design provides a better solution, simultaneously targeting multiple pathways, even when the drug resists one, it remains effective for others. In this study, we included four crucial proteins that perform signalling, receptor, and regulatory action, namely- NUDIX Hydrolases, Dihydrofolate Reductase, HER2/neu Kinase and EGFR and performed multitargeted molecular docking studies against human-approved drugs using HTVS, SP and extra precise algorithms and filtered the poses with MM\GBSA, suggested a benzodiazepine derivative chlordiazepoxide, used as an anxiolytic agent, can be a multitargeted inhibitor with docking and MM\GBSA score ranging from - 4.628 to - 7.877 and - 18.59 to - 135.86 kcal/mol, respectively, and the most interacted residues were 6ARG, 6GLU, 3TRP, and 3VAL. The QikProp-based ADMET and DFT computations showed the suitability and stability of the drug candidate followed by 100 ns MD simulation in water and MMGBSA on trajectories, resulting in stable performance and many intermolecular interactions to make the complexes stable, which favours that chlordiazepoxide can be a multitargeted breast cancer inhibitor. However, experimental validation is needed before its use.


Assuntos
Neoplasias da Mama , Feminino , Masculino , Humanos , Neoplasias da Mama/tratamento farmacológico , Clordiazepóxido , Simulação de Acoplamento Molecular , Transdução de Sinais , Benzodiazepinas , Fatores de Transcrição
2.
Front Microbiol ; 15: 1345478, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559346

RESUMO

Antimicrobial resistance is one of the largest medical challenges because of the rising frequency of opportunistic human microbial infections across the globe. This study aimed to extract chitosan from the exoskeletons of dead bees and load it with bee venom (commercially available as Apitoxin [Api]). Then, the ionotropic gelation method would be used to form nanoparticles that could be a novel drug-delivery system that might eradicate eight common human pathogens (i.e., two fungal and six bacteria strains). It might also be used to treat the human colon cancer cell line (Caco2 ATCC ATP-37) and human liver cancer cell line (HepG2ATCC HB-8065) cancer cell lines. The x-ray diffraction (XRD), Fourier transform infrared (FTIR), and dynamic light scattering (DLS) properties, ζ-potentials, and surface appearances of the nanoparticles were evaluated by transmission electron microscopy (TEM). FTIR and XRD validated that the Api was successfully encapsulated in the chitosan nanoparticles (ChB NPs). According to the TEM, the ChB NPs and the ChB NPs loaded with Apitoxin (Api@ChB NPs) had a spherical shape and uniform size distribution, with non-aggregation, for an average size of approximately 182 and 274 ± 3.8 nm, respectively, and their Zeta potential values were 37.8 ± 1.2 mV and - 10.9 mV, respectively. The Api@ChB NPs had the greatest inhibitory effect against all tested strains compared with the ChB NPs and Api alone. The minimum inhibitory concentrations (MICs) of the Api, ChB NPs, and Api@ChB NPs were evaluated against the offer mentioned colony forming units (CFU/mL), and their lowest MIC values were 30, 25, and 12.5 µg mL-1, respectively, against Enterococcus faecalis. Identifiable morphological features of apoptosis were observed by 3 T3 Phototox software after Api@ChB NPs had been used to treat the normal Vero ATCC CCL-81, Caco2 ATCC ATP-37, and HepG2 ATCC HB-8065 cancer cell lines for 24 h. The morphological changes were clear in a concentration-dependent manner, and the ability of the cells was 250 to 500 µg mL-1. These results revealed that Api@ChB NPs may be a promising natural nanotreatment for common human pathogens.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa