Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
J Med Genet ; 58(9): 592-601, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32843486

RESUMO

BACKGROUND: Next-generation sequencing has facilitated the diagnosis of neurodevelopmental disorders with variable and non-specific clinical findings. Recently, a homozygous missense p.(Asp37Tyr) variant in TRAPPC2L, a core subunit of TRAPP complexes which function as tethering factors during membrane trafficking, was reported in two unrelated individuals with neurodevelopmental delay, post-infectious encephalopathy-associated developmental arrest, tetraplegia and accompanying rhabdomyolysis. METHODS: We performed whole genome sequencing on members of an Ashkenazi Jewish pedigree to identify the underlying genetic aetiology of global developmental delay/intellectual disability in three affected siblings. To assess the effect of the identified TRAPPC2L variant, we performed biochemical and cell biological functional studies on the TRAPPC2L protein. RESULTS: A rare homozygous predicted deleterious missense variant, p.(Ala2Gly), in TRAPPC2L was identified in the affected siblings and it segregated with the neurodevelopmental phenotype within the family. Using a yeast two-hybrid assay and in vitro binding, we demonstrate that the p.(Ala2Gly) variant, but not the p.(Asp37Tyr) variant, disrupted the interaction between TRAPPC2L and another core TRAPP protein, TRAPPC6a. Size exclusion chromatography suggested that this variant affects the assembly of TRAPP complexes. Employing two different membrane trafficking assays using fibroblasts from one of the affected siblings, we found a delay in traffic into and out of the Golgi. Similar to the p.(Asp37Tyr) variant, the p.(Ala2Gly) variant resulted in an increase in the levels of active RAB11. CONCLUSION: Our data fill in a gap in the knowledge of TRAPP architecture with TRAPPC2L interacting with TRAPPC6a, positioning it as a putative adaptor for other TRAPP subunits. Collectively, our findings support the pathogenicity of the TRAPPC2L p.(Ala2Gly) variant.


Assuntos
Predisposição Genética para Doença , Homozigoto , Proteínas de Membrana Transportadoras/genética , Mutação , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/metabolismo , Fatores de Transcrição/genética , Proteínas de Transporte Vesicular/metabolismo , Adulto , Idade de Início , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Haplótipos , Humanos , Masculino , Proteínas de Membrana Transportadoras/química , Transtornos do Neurodesenvolvimento/diagnóstico , Linhagem , Fenótipo , Ligação Proteica , Multimerização Proteica , Relação Estrutura-Atividade , Fatores de Transcrição/química , Proteínas de Transporte Vesicular/química
2.
Brain ; 143(1): 112-130, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31794024

RESUMO

The conserved transport protein particle (TRAPP) complexes regulate key trafficking events and are required for autophagy. TRAPPC4, like its yeast Trs23 orthologue, is a core component of the TRAPP complexes and one of the essential subunits for guanine nucleotide exchange factor activity for Rab1 GTPase. Pathogenic variants in specific TRAPP subunits are associated with neurological disorders. We undertook exome sequencing in three unrelated families of Caucasian, Turkish and French-Canadian ethnicities with seven affected children that showed features of early-onset seizures, developmental delay, microcephaly, sensorineural deafness, spastic quadriparesis and progressive cortical and cerebellar atrophy in an effort to determine the genetic aetiology underlying neurodevelopmental disorders. All seven affected subjects shared the same identical rare, homozygous, potentially pathogenic variant in a non-canonical, well-conserved splice site within TRAPPC4 (hg19:chr11:g.118890966A>G; TRAPPC4: NM_016146.5; c.454+3A>G). Single nucleotide polymorphism array analysis revealed there was no haplotype shared between the tested Turkish and Caucasian families suggestive of a variant hotspot region rather than a founder effect. In silico analysis predicted the variant to cause aberrant splicing. Consistent with this, experimental evidence showed both a reduction in full-length transcript levels and an increase in levels of a shorter transcript missing exon 3, suggestive of an incompletely penetrant splice defect. TRAPPC4 protein levels were significantly reduced whilst levels of other TRAPP complex subunits remained unaffected. Native polyacrylamide gel electrophoresis and size exclusion chromatography demonstrated a defect in TRAPP complex assembly and/or stability. Intracellular trafficking through the Golgi using the marker protein VSVG-GFP-ts045 demonstrated significantly delayed entry into and exit from the Golgi in fibroblasts derived from one of the affected subjects. Lentiviral expression of wild-type TRAPPC4 in these fibroblasts restored trafficking, suggesting that the trafficking defect was due to reduced TRAPPC4 levels. Consistent with the recent association of the TRAPP complex with autophagy, we found that the fibroblasts had a basal autophagy defect and a delay in autophagic flux, possibly due to unsealed autophagosomes. These results were validated using a yeast trs23 temperature sensitive variant that exhibits constitutive and stress-induced autophagic defects at permissive temperature and a secretory defect at restrictive temperature. In summary we provide strong evidence for pathogenicity of this variant in a member of the core TRAPP subunit, TRAPPC4 that associates with vesicular trafficking and autophagy defects. This is the first report of a TRAPPC4 variant, and our findings add to the growing number of TRAPP-associated neurological disorders.


Assuntos
Autofagia/genética , Anormalidades Craniofaciais/genética , Fibroblastos/metabolismo , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Proteínas de Transporte Vesicular/genética , Atrofia , Cerebelo/diagnóstico por imagem , Cerebelo/patologia , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Criança , Pré-Escolar , Anormalidades Craniofaciais/diagnóstico por imagem , Surdez/genética , Surdez/fisiopatologia , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/fisiopatologia , Epilepsia/genética , Epilepsia/fisiopatologia , Feminino , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/fisiopatologia , Humanos , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Deficiência Intelectual/fisiopatologia , Masculino , Microcefalia/genética , Microcefalia/fisiopatologia , Microscopia de Fluorescência , Espasticidade Muscular/genética , Espasticidade Muscular/fisiopatologia , Transtornos do Neurodesenvolvimento/fisiopatologia , Linhagem , Quadriplegia/genética , Quadriplegia/fisiopatologia , Sítios de Splice de RNA/genética , Síndrome
3.
J Med Genet ; 55(11): 753-764, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30120216

RESUMO

BACKGROUND: The combination of febrile illness-induced encephalopathy and rhabdomyolysis has thus far only been described in disorders that affect cellular energy status. In the absence of specific metabolic abnormalities, diagnosis can be challenging. OBJECTIVE: The objective of this study was to identify and characterise pathogenic variants in two individuals from unrelated families, both of whom presented clinically with a similar phenotype that included neurodevelopmental delay, febrile illness-induced encephalopathy and episodes of rhabdomyolysis, followed by developmental arrest, epilepsy and tetraplegia. METHODS: Whole exome sequencing was used to identify pathogenic variants in the two individuals. Biochemical and cell biological analyses were performed on fibroblasts from these individuals and a yeast two-hybrid analysis was used to assess protein-protein interactions. RESULTS: Probands shared a homozygous TRAPPC2L variant (c.109G>T) resulting in a p.Asp37Tyr missense variant. TRAPPC2L is a component of transport protein particle (TRAPP), a group of multisubunit complexes that function in membrane traffic and autophagy. Studies in patient fibroblasts as well as in a yeast system showed that the p.Asp37Tyr protein was present but not functional and resulted in specific membrane trafficking delays. The human missense mutation and the analogous mutation in the yeast homologue Tca17 ablated the interaction between TRAPPC2L and TRAPPC10/Trs130, a component of the TRAPP II complex. Since TRAPP II activates the GTPase RAB11, we examined the activation state of this protein and found increased levels of the active RAB, correlating with changes in its cellular morphology. CONCLUSIONS: Our study implicates a RAB11 pathway in the aetiology of the TRAPPC2L disorder and has implications for other TRAPP-related disorders with similar phenotypes.


Assuntos
Alelos , Fibroblastos/metabolismo , Mutação , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Proteínas rab de Ligação ao GTP/genética , Adolescente , Biomarcadores , Biópsia , Pré-Escolar , Análise Mutacional de DNA , Feminino , Estudos de Associação Genética , Predisposição Genética para Doença , Genótipo , Humanos , Imageamento por Ressonância Magnética , Mutação de Sentido Incorreto , Fenótipo , Transporte Proteico , Sequenciamento do Exoma
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa