Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Cell Mol Med ; 28(11): e18412, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842132

RESUMO

Cyclin-dependent kinase 5 (Cdk5) is a protein expressed in postmitotic neurons in the central nervous system (CNS). Cdk5 is activated by p35 and p39 which are neuron regulatory subunits. Cdk5/p35 complex is activated by calpain protease to form Cdk5/p35 which has a neuroprotective effect by regulating the synaptic plasticity and memory functions. However, exaggerated Cdk5 is implicated in different types of neurodegenerative diseases including Parkinson disease (PD). Therefore, modulation of Cdk5 signalling may mitigate PD neuropathology. Therefore, the aim of the present review was to discuss the critical role of Cdk5 in the pathogenesis of PD, and how Cdk5 inhibitors are effectual in the management of PD. In conclusion, overactivated Cdk5 is involved the development of neurodegeneration, and Cdk5/calpain inhibitors such as statins, metformin, fenofibrates and rosiglitazone can attenuate the progression of PD neuropathology.


Assuntos
Quinase 5 Dependente de Ciclina , Doença de Parkinson , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Animais , Calpaína/metabolismo , Calpaína/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
2.
J Cell Mol Med ; 28(12): e18495, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899551

RESUMO

Parkinson disease (PD) is one of the most common neurodegenerative diseases of the brain. Of note, brain renin-angiotensin system (RAS) is intricate in the PD neuropathology through modulation of oxidative stress, mitochondrial dysfunction and neuroinflammation. Therefore, modulation of brain RAS by angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) may be effective in reducing the risk and PD neuropathology. It has been shown that all components including the peptides and enzymes of the RAS are present in the different brain areas. Brain RAS plays a critical role in the regulation of memory and cognitive function, and in the controlling of central blood pressure. However, exaggerated brain RAS is implicated in the pathogenesis of different neurodegenerative diseases including PD. Two well-known pathways of brain RAS are recognized including; the classical pathway which is mainly mediated by AngII/AT1R has detrimental effects. Conversely, the non-classical pathway which is mostly mediated by ACE2/Ang1-7/MASR and AngII/AT2R has beneficial effects against PD neuropathology. Exaggerated brain RAS affects the viability of dopaminergic neurons. However, the fundamental mechanism of brain RAS in PD neuropathology was not fully elucidated. Consequently, the purpose of this review is to disclose the mechanistic role of RAS in in the pathogenesis of PD. In addition, we try to revise how the ACEIs and ARBs can be developed for therapeutics in PD.


Assuntos
Encéfalo , Doença de Parkinson , Sistema Renina-Angiotensina , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Encéfalo/patologia , Encéfalo/metabolismo , Animais , Antagonistas de Receptores de Angiotensina/uso terapêutico , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/farmacologia
3.
J Cell Mol Med ; 28(10): e18368, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38752280

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder of the brain and is manifested by motor and non-motor symptoms because of degenerative changes in dopaminergic neurons of the substantia nigra. PD neuropathology is associated with mitochondrial dysfunction, oxidative damage and apoptosis. Thus, the modulation of mitochondrial dysfunction, oxidative damage and apoptosis by growth factors could be a novel boulevard in the management of PD. Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase type B (TrkB) are chiefly involved in PD neuropathology. BDNF promotes the survival of dopaminergic neurons in the substantia nigra and enhances the functional activity of striatal neurons. Deficiency of the TrkB receptor triggers degeneration of dopaminergic neurons and accumulation of α-Syn in the substantia nigra. As well, BDNF/TrkB signalling is reduced in the early phase of PD neuropathology. Targeting of BDNF/TrkB signalling by specific activators may attenuate PD neuropathology. Thus, this review aimed to discuss the potential role of BDNF/TrkB activators against PD. In conclusion, BDNF/TrkB signalling is decreased in PD and linked with disease severity and long-term complications. Activation of BDNF/TrkB by specific activators may attenuate PD neuropathology.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Doença de Parkinson , Receptor trkB , Transdução de Sinais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Receptor trkB/metabolismo , Animais , Glicoproteínas de Membrana/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia
4.
Cell Mol Neurobiol ; 44(1): 55, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977507

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory impairment and cognitive dysfunctions. It has been shown that hypoglycemia can adversely affect AD neuropathology. It is well-known that chronic hyperglycemia in type 2 diabetes (T2D) is regarded as a potential risk factor for the development and progression of AD. However, the effect of recurrent hypoglycemia on the pathogenesis of AD was not deeply discussed, and how recurrent hypoglycemia affects AD at cellular and molecular levels was not intensely interpreted by the previous studies. The underlying mechanisms for hypoglycaemia-induced AD are diverse such as endothelial dysfunction, thrombosis, and neuronal injury that causing tau protein hyperphosphorylation and the accumulation of amyloid beta (Aß) in the brain neurons. Of note, the glucagon hormone, which controls blood glucose, can also regulate the cognitive functions. Glucagon increases blood glucose by antagonizing the metabolic effect of insulin. Therefore, glucagon, through attenuation of hypoglycemia, may prevent AD neuropathology. Glucagon/GLP-1 has been shown to promote synaptogenesis, hippocampal synaptic plasticity, and learning and memory, while attenuating amyloid and tau pathologies. Therefore, activation of glucagon receptors in the brain may reduce AD neuropathology. A recent glucagon receptor agonist dasiglucagon which used in the management of hypoglycemia may be effective in preventing hypoglycemia and AD neuropathology. This review aims to discuss the potential role of dasiglucagon in treating hypoglycemia in AD, and how this drug reduce AD neuropathology.


Assuntos
Doença de Alzheimer , Hipoglicemia , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Hipoglicemia/metabolismo , Hipoglicemia/complicações , Animais , Fatores de Risco
5.
Diabetes Obes Metab ; 26(8): 3031-3044, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38802993

RESUMO

Depression is a mood disorder that may increase risk for the development of insulin resistance (IR) and type 2 diabetes (T2D), and vice versa. However, the mechanistic pathway linking depression and T2D is not fully elucidated. The aim of this narrative review, therefore, was to discuss the possible link between depression and T2D. The coexistence of T2D and depression is twice as great compared to the occurrence of either condition independently. Hyperglycaemia and dyslipidaemia promote the incidence of depression by enhancing inflammation and reducing brain serotonin (5-hydroxytryptamine [5HT]). Dysregulation of insulin signalling in T2D impairs brain 5HT signalling, leading to the development of depression. Furthermore, depression is associated with the development of hyperglycaemia and poor glycaemic control. Psychological stress and depression promote the development of T2D. In conclusion, T2D could be a potential risk factor for the development of depression through the induction of inflammatory reactions and oxidative stress that affect brain neurotransmission. In addition, chronic stress in depression may induce the development of T2D through dysregulation of the hypothalamic-pituitary-adrenal axis and increase circulating cortisol levels, which triggers IR and T2D.


Assuntos
Depressão , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Depressão/etiologia , Estresse Psicológico/complicações , Estresse Psicológico/fisiopatologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Encéfalo/metabolismo , Estresse Oxidativo/fisiologia , Fatores de Risco , Hiperglicemia/metabolismo , Sistema Hipófise-Suprarrenal/fisiopatologia , Sistema Hipófise-Suprarrenal/metabolismo , Transtorno Depressivo/etiologia , Serotonina/metabolismo
6.
Inflammopharmacology ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141151

RESUMO

Endothelial dysfunction is considered one of the main causes of atherosclerosis and elevated blood pressure. Atherosclerosis (AS) formation is enhanced by different mechanisms including cytokine generation, vascular smooth muscle cell proliferation, and migration. One of the recent treatment toward endothelial dysfunction is vinpocetine (VPN). VPN is an ethyl apovincaminate used in the management of different cerebrovascular disorders and endothelial dysfunction through inhibition of atherosclerosis formation. VPN is a potent inhibitor of phosphodiesterase enzyme 1 (PDE1) as well it has anti-inflammatory and antioxidant effects through inhibition of the expression of nuclear factor kappa B (NF-κB). VPN has been shown to be effective against development and progression of AS. However, the underlying molecular mechanism was not fully clarified. Consequently, objective of the present narrative review was to clarify the mechanistic role of VPN in AS. Most of pro-inflammatory cytokines released from macrophages are inhibited by the action of VPN via NF-κB-dependent mechanism. VPN blocks monocyte adhesion and migration by inhibiting the expression of pro-inflammatory cytokines. As well, VPN is effective in reducing oxidative stress, a cornerstone in the pathogenesis of AS, through inhibition of NF-κB and PDE1. VPN promotes plaque stability and prevent erosion and rupture of atherosclerotic plaque. In conclusion, VPN through mitigation of inflammatory and oxidative stress with plaque stability effects could be effective agent in the management of endothelial dysfunction through inhibition of atherosclerosis mediators.

10.
Ageing Res Rev ; 95: 102209, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38286334

RESUMO

Vascular Parkinsonism (VP) is clinical term represents a progressive ischemic changes and subcortical lacunar infarct leading to Parkinsonism mainly in the lower limbs so called lower body Parkinsonism. The VP neuropathology is differed from that of PD neuropathology which rarely associated with basal ganglion lesions. Dopamine transporters are normal in VP but are highly reduced in PD, and dopaminergic agonists had no effective role on VP. The neuropathological mechanisms of VP are related to vascular injury which induces the interruption of the neural connection between basal ganglion and cerebral cortex. Hyperlipidemia and other cardiometabolic risk factors augment VP risk and the related neuropathology. Targeting of these cardiometabolic disorders by lipid-lowering statins may be effective in the management of VP. Therefore, this mini-review aims to clarify the possible role of statins in the management of VP. Statins have neuroprotective effects against different neurodegenerative diseases by anti-inflammatory, antioxidant and antithrombotic effects with enhancement of endothelial function. In conclusion, statins can prevent and treat VP by inhibiting inflammatory and oxidative stress disorders, mitigating of white matter hyperintensities and improving of neuronal signaling pathways. Additional preclinical, clinical trials and prospective studies are warranted in this regard.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Doença de Parkinson Secundária , Transtornos Parkinsonianos , Doenças Vasculares , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Transtornos Parkinsonianos/etiologia , Transtornos Parkinsonianos/patologia
11.
Autophagy ; : 1-12, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38873924

RESUMO

Macroautophagy/autophagy is an essential degradation process that removes abnormal cellular components, maintains homeostasis within cells, and provides nutrition during starvation. Activated autophagy enhances cell survival during stressful conditions, although overactivation of autophagy triggers induction of autophagic cell death. Therefore, early-onset autophagy promotes cell survival whereas late-onset autophagy provokes programmed cell death, which can prevent disease progression. Moreover, autophagy regulates pancreatic ß-cell functions by different mechanisms, although the precise role of autophagy in type 2 diabetes (T2D) is not completely understood. Consequently, this mini-review discusses the protective and harmful roles of autophagy in the pancreatic ß cell and in the pathophysiology of T2D.

12.
Eur J Med Res ; 29(1): 205, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539252

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease as a result of the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The fundamental features of PD are motor and non-motor symptoms. PD symptoms develop due to the disruption of dopaminergic neurotransmitters and other neurotransmitters such as γ-aminobutyric acid (GABA). The potential role of GABA in PD neuropathology concerning the motor and non-motor symptoms of PD was not precisely discussed. Therefore, this review intended to illustrate the possible role of GABA in PD neuropathology regarding motor and non-motor symptoms. The GABA pathway is essential in regulating the inhibitory tone to prevent excessive stimulation of the cerebral cortex. Degeneration of dopaminergic neurons in PD is linked with reducing GABAergic neurotransmission. Decreasing GABA activity promotes mitochondrial dysfunction and oxidative stress, which are highly related to PD neuropathology. Hence, restoring GABA activity by GABA agonists may attenuate the progression of PD motor symptoms. Therefore, dysregulation of GABAergic neurons in the SNpc contributes to developing PD motor symptoms. Besides, PD non-motor symptoms are also related to the dysfunction of the GABAergic pathway, and amelioration of this pathway may reduce PD non-motor symptoms. In conclusion, the deregulation of the GABAergic pathway in PD might be intricate in developing motor and non-motor symptoms. Improving this pathway might be a novel, beneficial approach to control PD symptoms.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Ácido gama-Aminobutírico/fisiologia , Neurotransmissores
13.
Mol Neurobiol ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703341

RESUMO

Alpha-synuclein (α-Syn) is a specific neuronal protein that regulates neurotransmitter release and trafficking of synaptic vesicles. Exosome-associated α-Syn which is specific to the central nervous system (CNS) is involved in the pathogenesis of epilepsy. Therefore, this review aimed to elucidate the possible link between α-Syn and epilepsy, and how it affects the pathophysiology of epilepsy. A neurodegenerative protein such as α-Syn is implicated in the pathogenesis of epilepsy. Evidence from preclinical and clinical studies revealed that upregulation of α-Syn induces progressive neuronal dysfunctions through induction of oxidative stress, neuroinflammation, and inhibition of autophagy in a vicious cycle with subsequent development of severe epilepsy. In addition, accumulation of α-Syn in epilepsy could be secondary to the different cellular alterations including oxidative stress, neuroinflammation, reduction of brain-derived neurotrophic factor (BDNF) and progranulin (PGN), and failure of the autophagy pathway. However, the mechanism of α-Syn-induced-epileptogenesis is not well elucidated. Therefore, α-Syn could be a secondary consequence of epilepsy. Preclinical and clinical studies are warranted to confirm this causal relationship.

14.
Ageing Res Rev ; 94: 102200, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38237699

RESUMO

Parkinson disease (PD) is a common brain neurodegenerative disease due to progressive degeneration of the dopaminergic neurons in the substantia nigra pars compacta (SNpc). Of note, the cardio-metabolic disorders such as hypertension are adversely affect PD neuropathology through exaggeration of renin-angiotensin system (RAS). The RAS affects the stability of dopaminergic neurons in the SNpc, and exaggeration of angiotensin II (AngII) is implicated in the development and progression of PD. RAS has two axes classical including angiotensin converting enzyme (ACE)/AngII/AT1R, and the non-classical axis which include ACE2/Ang1-7/Mas receptor, AngIII, AngIV, AT2R, and AT4R. It has been shown that brain RAS is differs from that of systemic RAS that produce specific neuronal effects. As well, there is an association between brain RAS and PD. Therefore, this review aims to revise from published articles the role of brain RAS in the pathogenesis of PD focusing on the non-classical pathway, and how targeting of this axis can modulate PD neuropathology.


Assuntos
Hipertensão , Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Sistema Renina-Angiotensina/fisiologia , Angiotensina II/metabolismo , Peptidil Dipeptidase A/metabolismo
15.
Ageing Res Rev ; 95: 102233, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38360180

RESUMO

The ketogenic diet (KD) is a low-carbohydrate, adequate protein and high-fat diet. KD is primarily used to treat refractory epilepsy. KD was shown to be effective in treating different neurodegenerative diseases. Alzheimer disease (AD) is the first common neurodegenerative disease in the world characterized by memory and cognitive impairment. However, the underlying mechanism of KD in controlling of AD and other neurodegenerative diseases are not discussed widely. Therefore, this review aims to revise the fundamental mechanism of KD in different neurodegenerative diseases focusing on the AD. KD induces a fasting-like which modulates the central and peripheral metabolism by regulating mitochondrial dysfunction, oxidative stress, inflammation, gut-flora, and autophagy in different neurodegenerative diseases. Different studies highlighted that KD improves AD neuropathology by regulating synaptic neurotransmission and inhibiting of neuroinflammation and oxidative stress. In conclusion, KD improves cognitive function and attenuates the progression of AD neuropathology by reducing oxidative stress, mitochondrial dysfunction, and enhancing neuronal autophagy and brain BDNF.


Assuntos
Doença de Alzheimer , Dieta Cetogênica , Doenças Mitocondriais , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/metabolismo , Doenças Neurodegenerativas/metabolismo , Encéfalo/metabolismo , Doenças Mitocondriais/metabolismo
16.
Autophagy ; 20(7): 1473-1482, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38346408

RESUMO

Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ) that results from autoantibodies against nicotinic acetylcholine receptors (nAchRs) at NMJs. These autoantibodies are mainly originated from autoreactive B cells that bind and destroy nAchRs at NMJs preventing nerve impulses from activating the end-plates of skeletal muscle. Indeed, immune dysregulation plays a crucial role in the pathogenesis of MG. Autoreactive B cells are increased in MG due to the defect in the central and peripheral tolerance mechanisms. As well, autoreactive T cells are augmented in MG due to the diversion of regulatory T (Treg) cells or a defect in thymic anergy leading to T cell-mediated autoimmunity. Furthermore, macroautophagy/autophagy, which is a conserved cellular catabolic process, plays a critical role in autoimmune diseases by regulating antigen presentation, survival of immune cells and cytokine-mediated inflammation. Abnormal autophagic flux is associated with different autoimmune disorders. Autophagy regulates the connection between innate and adaptive immune responses by controlling the production of cytokines and survival of Tregs. As autophagy is involved in autoimmune disorders, it may play a major role in the pathogenesis of MG. Therefore, this mini-review demonstrates the potential role of autophagy and autophagy activators in MG.Abbreviations: Ach, acetylcholine; Breg, regulatory B; IgG, immunoglobulin G; MG, myasthenia gravis; NMJ, neuromuscular junction; ROS, reactive oxygen species; Treg, regulatory T; Ubl, ubiquitin-like.


Assuntos
Autofagia , Miastenia Gravis , Miastenia Gravis/imunologia , Miastenia Gravis/patologia , Miastenia Gravis/metabolismo , Humanos , Animais , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Autoanticorpos/imunologia
17.
Thyroid Res ; 17(1): 13, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38880884

RESUMO

Primary hypothyroidism (PHT) is associated with an increased risk for the development of atherosclerosis (AS) and other cardiovascular disorders. PHT induces atherosclerosis (AS) through the induction of endothelial dysfunction, and insulin resistance (IR). PHT promotes vasoconstriction and the development of hypertension. However, patients with subclinical PHT with normal thyroid hormones (THs) are also at risk for cardiovascular complications. In subclinical PHT, increasing thyroid stimulating hormone (TSH) levels could be one of the causative factors intricate in the progression of cardiovascular complications including AS. Nevertheless, the mechanistic role of PHT in AS has not been fully clarified in relation to increased TSH. Therefore, in this review, we discuss the association between increased TSH and AS, and how increased TSH may be involved in the pathogenesis of AS. In addition, we also discuss how L-thyroxine treatment affects the development of AS.

18.
Neurotox Res ; 42(5): 38, 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39177895

RESUMO

Melatonin (MTN) is a neuro-hormone released from the pineal gland. MTN secretion is regulated by different neuronal circuits, including the retinohypothalamic tract and suprachiasmatic nucleus (SCN), which are affected by light. MTN is neuroprotective in various neurodegenerative diseases, including Parkinson's disease (PD). MTN circulating level is highly blunted in PD. However, the underlying causes were not fully clarified. Thus, the present review aims to discuss the potential causes of blunted MTN levels in PD. Distortion of MTN circadian rhythmicity in PD patients causies extreme daytime sleepiness. The underlying mechanism for blunted MTN response may be due to reduction for light exposure, impairment of retinal light transmission, degeneration of circadian pacemaker and dysautonomia. In conclusion, degeneration of SCN and associated neurodegeneration together with neuroinflammation and activation of NF-κB and NLRP3 inflammasome, induce dysregulation of MTN secretion. Therefore, low serum MTN level reflects PD severity and could be potential biomarkers. Preclinical and clinical studies are suggested to clarify the underlying causes of low MTN in PD.


Assuntos
Ritmo Circadiano , Melatonina , Doença de Parkinson , Humanos , Doença de Parkinson/sangue , Melatonina/sangue , Melatonina/metabolismo , Ritmo Circadiano/fisiologia , Animais , Núcleo Supraquiasmático/metabolismo
19.
Eur J Med Res ; 29(1): 113, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336772

RESUMO

Multiple sclerosis (MS) is the most frequent inflammatory and demyelinating disease of the central nervous system (CNS). The underlying pathophysiology of MS is the destruction of myelin sheath by immune cells. The formation of myelin plaques, inflammation, and injury of neuronal myelin sheath characterizes its neuropathology. MS plaques are multiple focal regions of demyelination disseminated in the brain's white matter, spinal cords, deep grey matter, and cerebral cortex. Fenofibrate is a peroxisome proliferative activated receptor alpha (PPAR-α) that attenuates the inflammatory reactions in MS. Fenofibrate inhibits differentiation of Th17 by inhibiting the expression of pro-inflammatory signaling. According to these findings, this review intended to illuminate the mechanistic immunoinflammatory role of fenofibrate in mitigating MS neuropathology. In conclusion, fenofibrate can attenuate MS neuropathology by modulating different pathways, including oxidative stress, autophagy, mitochondrial dysfunction, inflammatory-signaling pathways, and neuroinflammation.


Assuntos
Fenofibrato , Esclerose Múltipla , Humanos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Fenofibrato/farmacologia , Fenofibrato/uso terapêutico , Sistema Nervoso Central , Neurônios/patologia , Inflamação/patologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-39075837

RESUMO

Neurodegenerative diseases (NDs) such as Alzheimer disease (AD) and Parkinson disease (PD) are group of diseases affecting the central nervous system (CNS) characterized by progressive neurodegenerations and cognitive impairment. Findings from different studies highlighted the beneficial and detrimental effects of serum uric acid on the development and progression of NDs. Therefore, this mini-review aims to discuss the beneficial and detrimental effects of uric on NDs. The neuroprotective effect of uric acid is mainly related to the antioxidant effect of uric acid which alleviates oxidative stress-induced neurodegeneration in AD and PD. However, long-term effect of hyperuricemia prompts for the development and progression of cognitive impairment. Hyperuricemia is associated with cognitive impairment and dementia, and gout increases dementia risk. In addition, hyperuricemia can cause cerebral vascular injury which is a risk factor for vascular dementia and cognitive impairment. Taken together, the relationship between uric acid and NDs risk remains conflicting. Hence, preclinical and clinical studies are indicated in this regard.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa