Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37108340

RESUMO

Urokinase receptors regulate the interplay between inflammation, immunity, and blood clotting. The soluble urokinase plasminogen activator system is an immunologic regulator affecting endothelial function and its related receptor; the soluble urokinase plasminogen activator receptor (suPAR) has been reported to impact kidney injury. This work aims to measure serum levels of suPAR in COVID-19 patients and correlate the measurements with variable clinicolaboratory parameters and patient outcomes. In this prospective cohort study, 150 COVID-19 patients and 50 controls were included. The circulating suPAR levels were quantified by Enzyme-linked immunosorbent assay (ELISA). Routine COVID-19 laboratory assessments, including CBC, CRP, LDH, serum creatinine, and estimated glomerular filtration rates, were performed. The need for oxygen therapy, CO-RAD score, and survival rates was assessed. Bioinformatic analysis and molecular docking were run to explore the urokinase receptor structure/function and to characterize molecules as potential anti-suPAR therapeutic targets, respectively. We found higher circulating suPAR levels in COVID-19 patients vs. controls (p < 0.001). Circulating suPAR levels positively correlated with COVID-19 severity, the need for O2 therapy, the total leukocytes count, and the neutrophils to lymphocyte ratio, while they were negatively correlated with the O2 saturation level, albumin, blood calcium, lymphocytic count, and GFR. In addition, the suPAR levels were associated with poor prognostic outcomes such as a high incidence of acute kidney injury (AKI) and mortality rate. Kaplan-Meier curves showed a lower survival rate with higher suPAR levels. The logistic regression analysis confirmed the significant association of suPAR levels with the occurrence of AKI related to COVID-19 and with increased mortality probability within three months of COVID-19 follow-up. Some compounds that can act similarly to uPAR were discovered and tested by molecular docking to identify the possible ligand-protein interactions. In conclusion, higher circulating suPAR levels were associated with COVID-19 severity and could be considered a putative predictor of AKI development and mortality.


Assuntos
Injúria Renal Aguda , COVID-19 , Humanos , Receptores de Ativador de Plasminogênio Tipo Uroquinase , Estudos Prospectivos , Ativador de Plasminogênio Tipo Uroquinase , Simulação de Acoplamento Molecular , COVID-19/complicações , Injúria Renal Aguda/etiologia , Biomarcadores
2.
J Biomol Struct Dyn ; 41(18): 8682-8689, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36264138

RESUMO

Studies have established that proteolytic enzyme inhibition holds significant promise in cancer prevention and treatment. Cathepsin C (CatC) is conserved lysosomal cysteine dipeptidyl aminopeptidase, which is the key for pro-inflammatory neutrophil serine protease activation and biological functioning. This makes CatC as a promising therapeutic drug target for the management of different cancer types. Considering this, using a wide range of computer aided drug-designing applications, several inhibitors are shortlisted against CatC active pocket, which interact with the enzyme with high affinity and form strong intermolecular interaction network. Compared to control, three molecules ASN_06916232, ASN_06917112 and ASN_06916892 are filtered as best binders of the CatC active pocket with binding energy value of -10.9 kcal/mol, -10.9 kcal/mol and -10.7 kcal/mol, respectively. These compounds interact with several important active side residues of CatC such as Ser233, Cys234, Gly277, Asn380 and His38. Furthermore, the complexes of these compounds with CatC reveal very stable dynamics with average RMSD value less than 3 Å. The binding energy analysis further indicates the compounds to have very stable van der Waals and electrostatic energies. In conclusion, these molecules are promising and require experimental validation to prove them as anti-CatC molecules.Communicated by Ramaswamy H. Sarma.

3.
Biomedicines ; 11(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36830949

RESUMO

The wide spread of antibiotic resistance has been alarming in recent years and poses a serious global hazard to public health as it leads to millions of deaths all over the world. The wide spread of resistance and sharing resistance genes between different types of bacteria led to emergence of multidrug resistant (MDR) microorganisms. This problem is exacerbated when microorganisms create biofilms, which can boost bacterial resistance by up to 1000-fold and increase the emergence of MDR infections. The absence of novel and potent antimicrobial compounds is linked to the rise of multidrug resistance. This has sparked international efforts to develop new and improved antimicrobial agents as well as innovative and efficient techniques for antibiotic administration and targeting. There is an evolution in nanotechnology in recent years in treatment and prevention of the biofilm formation and MDR infection. The development of nanomaterial-based therapeutics, which could overcome current pathways linked to acquired drug resistance, is a hopeful strategy for treating difficult-to-treat bacterial infections. Additionally, nanoparticles' distinct size and physical characteristics enable them to target biofilms and treat resistant pathogens. This review highlights the current advances in nanotechnology to combat MDR and biofilm infection. In addition, it provides insight on development and mechanisms of antibiotic resistance, spread of MDR and XDR infection, and development of nanoparticles and mechanisms of their antibacterial activity. Moreover, this review considers the difference between free antibiotics and nanoantibiotics, and the synergistic effect of nanoantibiotics to combat planktonic bacteria, intracellular bacteria and biofilm. Finally, we will discuss the strength and limitations of the application of nanotechnology against bacterial infection and future perspectives.

4.
Vaccines (Basel) ; 11(2)2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36851141

RESUMO

The ongoing antibiotic-resistance crisis is becoming a global problem affecting public health. Urgent efforts are required to design novel therapeutics against pathogenic bacterial species. Brucella melitensis is an etiological agent of brucellosis, which mostly affects sheep and goats but several cases have also been reported in cattle, water buffalo, yaks and dogs. Infected animals also represent the major source of infection for humans. Development of safer and effective vaccines for brucellosis remains a priority to support disease control and eradication in animals and to prevent infection to humans. In this research study, we designed an in-silico multi-epitopes vaccine for B. melitensis using computational approaches. The pathogen core proteome was screened for good vaccine candidates using subtractive proteomics, reverse vaccinology and immunoinformatic tools. In total, 10 proteins: catalase; siderophore ABC transporter substrate-binding protein; pyridoxamine 5'-phosphate oxidase; superoxide dismutase; peptidylprolyl isomerase; superoxide dismutase family protein; septation protein A; hypothetical protein; binding-protein-dependent transport systems inner membrane component; and 4-hydroxy-2-oxoheptanedioate aldolase were selected for epitopes prediction. To induce cellular and antibody base immune responses, the vaccine must comprise both B and T-cells epitopes. The epitopes were next screened for antigenicity, allergic nature and water solubility and the probable antigenic, non-allergic, water-soluble and non-toxic nine epitopes were shortlisted for multi-epitopes vaccine construction. The designed vaccine construct comprises 274 amino acid long sequences having a molecular weight of 28.14 kDa and instability index of 27.62. The vaccine construct was further assessed for binding efficacy with immune cell receptors. Docking results revealed that the designed vaccine had good binding potency with selected immune cell receptors. Furthermore, vaccine-MHC-I, vaccine-MHC-II and vaccine-TLR-4 complexes were opted based on a least-binding energy score of -5.48 kcal/mol, 0.64 kcal/mol and -2.69 kcal/mol. Those selected were then energy refined and subjected to simulation studies to understand dynamic movements of the docked complexes. The docking results were further validated through MMPBSA and MMGBSA analyses. The MMPBSA calculated -235.18 kcal/mol, -206.79 kcal/mol, and -215.73 kcal/mol net binding free energy, while MMGBSA estimated -259.48 kcal/mol, -206.79 kcal/mol and -215.73 kcal/mol for TLR-4, MHC-I and MHC-II complexes, respectively. These findings were validated by water-swap and entropy calculations. Overall, the designed vaccine construct can evoke proper immune responses and the construct could be helpful for experimental researchers in formulation of a protective vaccine against the targeted pathogen for both animal and human use.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37615851

RESUMO

Ovarian cancer (OC) is a significant contributor to gynecological cancer-related deaths worldwide, with a high mortality rate. Despite several advances in understanding the pathogenesis of OC, the molecular mechanisms underlying its development and prognosis remain poorly understood. Therefore, the current research study aimed to identify hub genes involved in the pathogenesis of OC that could serve as selective diagnostic and therapeutic targets. To achieve this, the dataset GEO2R was used to retrieve differentially expressed genes. The study identified a total of five genes (CDKN1A, DKK1, CYP1B1, NTS, and GDF15) that were differentially expressed in OC. Subsequently, a network analysis was performed using the STRING database, followed by the construction of a network using Cytoscape. The network analyzer tool in Cytoscape predicted 276 upregulated and 269 downregulated genes. Furthermore, KEGG analysis was conducted to identify different pathways related to OC. Subsequently, survival analysis was performed to validate gene expression alterations and predict hub genes, using a p-value of 0.05 as a threshold. Four genes (CDKN1A, DKK1, CYP1B1, and NTS) were predicted as significant hub genes, while one gene (GDF15) was predicted as non-significant. The adjusted P values of said predicted genes are 2.85E - 07, 5.49E - 06, 4.28E - 07, 1.43E - 07, and 3.70E - 07 for CDKN1A, DKK1, NTS, GDF15, and CYP1B1 respectively; additionally 6.08, 5.76, 5.74, 5.01, and 4.9 LogFc values of the said genes were predicted in GEO data set. In a boxplot analysis, the expression of these genes was analyzed in normal and tumor cells. The study found that three genes were highly expressed in tumor cells, while two genes (CDKN1A and DKK1) were more elevated in normal cells. According to the boxplot analysis for CDKN1A, 50% of tumor cells ranged between approx 3.8 and 5, while 50% of normal cells ranged between approx 6.9 and 7.9, which is greater than tumor cells. This shows that in normal cells, the CYP1B1 has a high expression level according to the GEPIA boxplot; addtionally the boxplot for DKK1 indicated that 50% of tumor cells ranged between approx 0 and 0.5, which was less than that of normal cells which ranged between approx 0.3 and 0.9. It shows that DKK1 is highly expressed in normal genes. Overall, the current study provides novel insights into the molecular mechanisms underlying OC. The identified hub genes and drug candidate targets could potentially serve as alternative diagnostic and therapeutic options for OC patients. Further research is needed to investigate the clinical significance of these findings and develop effective interventions that can improve the prognosis of patients with OC.

6.
J Biomol Struct Dyn ; : 1-10, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37551016

RESUMO

The conventional course of drug discovery is a lengthy, expensive and complex process and often experiences a high failure rate. This in-silico based study screened novel drug molecules against Pseudomonas aeruginosa disulfide-bond protein A1 (PaDsbA1; PDB ID of 4ZL7) using a variety of chemoinformatic and biophysics approaches. The structure-based virtual screening identified three antipseudomonal compounds (BDC_30129064, BDC_20699588 and BDC_25329008) that targeted PaDsbA1 enzyme with a binding energy score of -7.8 kcal/mol, -7.7 kcal/mol and -7.7 kcal/mol, respectively. The compounds revealed deep binding at the enzyme active pocket with close distance hydrogen bond interactions with Thr46, Pro55, Val58, Arg62, His88, and Asp180. The co-crystalized hexaethylene glycol revealed a binding energy of -6.02 kcal/mol. The docked compounds were further subjected to molecular dynamics simulation analysis in order to check the dynamic movements of docked complexes. The complexes reported no drastic changes during simulation time. In the simulation, stable compounds binding and docked conformation were accomplished. The docking and simulation results were validated using free binding energies calculation through molecular mechanics with generalized born surface area solvation and molecular mechanics Poisson Boltzmann surface area (MMGBSA/MMPBSA) approaches. The net binding energy estimated by MMGBSA for BDC_30129064, BDC_20699588 and BDC_25329008 was -75.07 kcal/mol, -77.87 kcal/mol and -59.1 kcal/mol, respectively while that of MMPBSA for the compounds was -72.47 kcal/mol, -78.99 kcal/mol and -60.991 kcal/mol, respectively. The physiochemical properties of the selected compounds indicated them to be physiochemically stable with good absorption, distribution, metabolism and elimination properties. From the above observations and predictions, the compounds can be recommended for further experimental validation in order to decipher their anti-virulence capacity in blocking disulfide bond formation in P. aeruginosa.Communicated by Ramaswamy H. Sarma.

7.
J Biomol Struct Dyn ; 41(20): 10859-10868, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36533379

RESUMO

In 2022, the ongoing multi-country outbreak of monkeypox virus-now occurring outside Africa, too is a global health concern. Monkeypox is a zoonotic virus, which causes disease mainly in animals, and then it is transferred to humans. Recently, in the monkeypox epidemic, a large number of human cases emerged while the global health community worked to tackle the outbreak and save lives. Herein, a multi-epitope-based vaccine is designed against monkeypox virus using two surface-associated proteins: MPXVgp002 accession number > YP_010377003.1 and MPXVgp008 accession number > YP_010377007.1 proteins. These proteins were utilized for B- and T-cell epitopes prediction. The epitopes were further screened, and the screen filtered KCKDNEYRSR, RSCNTTHNR, and RTRRETGAS with the antigenicity scores of 0.5279, 0.5604, and 0.7628, respectively. Overall, the epitopes can induce immunity in 99.74% population of the world. Further, GPGPG linkers were used for joining the epitopes and EAAAK linker was used for adjuvant attachment. It has a three-dimensional structure modelled for retaining the structural stability. Three pairs of amino acid residues that were able to make disulfide bonds were chosen: Gly1-Ser82, Cys7-Tyr10, and Phe51-Ile55. Molecular docking of vaccine was done with toll-like receptors, viz., 2, 3, 4, and 8 immune cell receptors. The docking results revealed that the vaccine as potential molecule due to its better binding affinity with toll-like receptors 2, 3, 4 and 8. Top complex in docking in with each receptor was selected based on lowest energy scores- -888.7 kcal/mol (TLR-2), -976.3 kcal/mol (TLR-3), -801.9 kcal/mol (TLR-4), and -955.4 kcal/mol (TLR-4)-were subjected to simulation. The docked complexes were evaluated in 500 ns of MD simulation. Throughout the simulation time, no significant deviation occurred. This confirmed that the vaccine as potential vaccine candidate to interact with immune cell receptors. This interaction is important for the immune system activation. In conclusion, the proposed vaccine construct against monkeypox could induce an effective immune response and speed up the vaccine development process. However, the study is completely based on the computational approach, hence, the experimental validation is required.Communicated by Ramaswamy H. Sarma.


Assuntos
Mpox , Vacinas , Animais , Humanos , Monkeypox virus , Proteínas de Membrana , Simulação de Acoplamento Molecular , Receptor 4 Toll-Like , Epitopos de Linfócito T , Epitopos de Linfócito B , Vacinas de Subunidades Antigênicas , Biologia Computacional
8.
J Biomol Struct Dyn ; : 1-14, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37962871

RESUMO

Helicobacter pylori infects 50% of the world population and in 80% of cases, the infection progresses to the point where an ulcer develops leading to gastric cancer (GC). This study aimed to prevent GC by predicting Hub genes that are inducing GC. Furthermore, the study objective was to screen inhibitory molecules that block the function of predicted genes through several biophysical approaches. These proteins, such as Mucin 4 (MUC4) and Baculoviral IAP repeat containing 3 (BIRC3), had LogFC values of 2.28 and 3.39, respectively, and were found to be substantially expressed in those who had H. pylori infection. The MUC4 and BIRC3 inhibit apoptosis of infected cells and promote cancerous cell survival. The proteins were examined for their Physico-chemical characteristics, 3D structure and secondary structure analysis, solvent assessable surface area (SASA), active site identification, and network analysis. The MUC4 and BIRC3 expression was inhibited by docking eighty different compounds collected from the ZINC database. Fifty-seven compounds were successfully docked into the active site resulting in the lowest binding energy scores. The ZINC585267910 and ZINC585268691 compounds showed the lowest binding energy of -8.5 kcal/mol for MUC4 and -7.1 kcal/mol for BIRC3, respectively, and were considered best-docked solutions for molecular dynamics simulations. The mean root mean square deviation (RMSD) value for the ZINC585267910-MUC4 complex was 0.86 Å and the ZINC585268691-BIRC3 complex was 1.01 Å. The net MM/GBSA energy value of the ZINC585267910-MUC4 complex estimated was -46.84 kcal/mol and that of the ZINC585268691-BIRC3 complex was -44.84 kcal/mol. In a nutshell, the compounds might be investigated further as an inhibitor of the said proteins to stop the progress of GC induced by H. pylori.Communicated by Ramaswamy H. Sarma.

9.
Infect Drug Resist ; 16: 853-867, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36818807

RESUMO

Background: Pseudomonas aeruginosa is incriminated in septicemia, significant economic losses in the poultry production sector, and severe respiratory infections in humans. This study aimed to investigate the occurrence, oprL sequencing, antimicrobial resistance patterns, virulence-determinant, Quorum sensing, and antibiotic resistance genes of P. aeruginosa retrieved from broiler chickens. Methods: Two hundred samples were collected from 120 broiler chickens from broiler farms at Ismailia Governorate, Egypt. Consequently, the bacteriological examination was conducted and the obtained P. aeruginosa strains were tested for oprL gene sequencing, antibiogram, and PCR screening of virulence, Quorum sensing, and antibiotic resistance genes. Results: The overall prevalence of P. aeruginosa in the examined birds was 28.3%. The oprL gene sequence analysis underlined that the tested strain expressed a notable genetic identity with various P. aeruginosa strains isolated from different geographical areas in the USA, India, China, Chile, and Ghana. PCR evidenced that the obtained P. aeruginosa strains, carrying virulence-related genes: oprL, toxA, aprA, phzM, and exoS in a prevalence of 100%, 100%, 42.5%, 33.3%, and 25.9%, respectively. Moreover, the recovered P. aeruginosa strains possessed the Quorum sensing genes: lasI, lasR, rhlI, and rhlR in a prevalence of 85.2%, 85.2%, 81.5%, and 81.5%, respectively. Furthermore, 40.7% of the isolated P. aeruginosa were XDR to seven antimicrobial classes, possessing sul1, bla TEM, tetA, bla CTX-M, bla OXA-1, and aadA1 genes. Conclusion: As we can tell, this is the first report emphasizing the evolution of XDR P. aeruginosa strains from broiler chicken in Egypt, which is supposed to be a serious threat to public health. The emerging XDR P. aeruginosa in poultry frequently harbored the oprL, toxA, and aprA virulence genes, the lasI, lasR, rhlI, and rhlR Quorum sensing genes, and the sul1, bla TEM, tetA, bla CTXM, bla OXA-1, and aadA1 resistance genes.

10.
Diabetes Metab Syndr Obes ; 15: 1011-1021, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401010

RESUMO

Background: Type 2 diabetes mellitus (T2DM) is growing illnesses associated with metabolic dysregulation such as obesity affecting a large population become leading causes of death worldwide. Fibronectin type III domain-containing protein 5 (FNDC-5) and selectin-E were suggested to have effects on metabolism and diabetes, therefore present study aimed to evaluate the clinical importance of FNDC-5 and selectin-E among the T2DM patients with and without obesity. Methods: Study included cohort of 200 T2DM patients with and without obesity. We evaluated FNDC-5, selectin-E mRNA expression as well as vitamin-D, and vitamin-B12 levels in among the T2DM patients with and without obesity. Results: Study observed significant difference in biochemical parameters included in study. T2DM patients with obesity had significantly higher fasting blood glucose levels (p<0.0001) and HbA1c (glycated hemoglobin) (p<0.0001) compared to those T2DM patients without obesity. T2DM patients with obesity also had higher systolic blood pressure (p=0.001), LDL (low density lipoprotein) (p=0.02), TG (triglycerides) (p=0.02) and cholesterol (p=0.01) compared to T2DM patients without obesity. The mRNA expression of FNDC-5 (p<0.0001) was lower in T2DM patients with obesity compared to T2DM patients without obesity. It was observed that the T2DM patients with vitamin-D deficiency had significantly lower FNDC-5 mRNA expression (p=0.03) when compared with those with sufficient vitamin-D level. T2DM patients with clinically normal vitamin-B12 level expressed 0.60 fold FNDC-5 mRNA expression while B12 deficient T2DM patients had 0.28 fold FNDC-5 mRNA expression (p=0.005). No as such significant association was was observed with selectin-E. A negative correlation of FNDC-5 mRNA expression with Post prandial glucose (mg/dl) (p=0.04) and TG (mg/dl) (p=0.02) was observed. Conclusion: FNDC-5 down regulation was observed with T2DM with obesity, vitamin-D and vitamin-B12 deficiency suggesting obesity, vitamin-D and vitamin-B12 deficiency could be the factor for FNDC-5 down-regulation leading to worseness or progression of disease. We suggest that FNDC-5 down-regulation could be used as an indicator for T2DM worseness and development of other associated complications.

11.
Vaccines (Basel) ; 10(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36366394

RESUMO

The swift emergence of antibiotic resistance (AR) in bacterial pathogens to make themselves adaptable to changing environments has become an alarming health issue. To prevent AR infection, many ways can be accomplished such as by decreasing the misuse of antibiotics in human and animal medicine. Among these AR bacterial species, Plesiomonas shigelloides is one of the etiological agents of intestinal infection in humans. It is a gram-negative rod-shaped bacterium that is highly resistant to several classes of antibiotics, and no licensed vaccine against the aforementioned pathogen is available. Hence, substantial efforts are required to screen protective antigens from the pathogen whole genome that can be subjected easily to experimental evaluations. Here, we employed a reverse vaccinology (RV) approach to design a multi-antigenic epitopes based vaccine against P. shigelloides. The complete genomes of P. shigelloides were retrieved from the National Center for Biotechnological Information (NCBI) that on average consist of 5226 proteins. The complete proteomes were subjected to different subtractive proteomics filters, and in the results of that analysis, out of total proteins, 2399 were revealed as non-redundant and 2827 as redundant proteins. The non-redundant proteins were further checked for subcellular localization analysis, in which three were localized in the extracellular matrix, eight were outer membrane, and 13 were found in the periplasmic membrane. All surface localized proteins were found to be virulent. Out of a total of 24 virulent proteins, three proteins (flagellar hook protein (FlgE), hypothetical protein, and TonB-dependent hemoglobin/transferrin/lactoferrin family receptor protein) were considered as potential vaccine targets and subjected to epitopes prediction. The predicted epitopes were further examined for antigenicity, toxicity, and solubility. A total of 10 epitopes were selected (GFKESRAEF, VQVPTEAGQ, KINENGVVV, ENKALSQET, QGYASANDE, RLNPTDSRW, TLDYRLNPT, RVTKKQSDK, GEREGKNRP, RDKKTNQPL). The selected epitopes were linked with each other via specific GPGPG linkers in order to design a multi-epitopes vaccine construct, and linked with cholera toxin B subunit adjuvant to make the designed vaccine construct more efficient in terms of antigenicity. The 3D structure of the vaccine construct was modeled ab initio as no appropriate template was available. Furthermore, molecular docking was carried out to check the interaction affinity of the designed vaccine with major histocompatibility complex (MHC-)I (PDB ID: 1L1Y), MHC-II (1KG0), and toll-like receptor 4 ((TLR-4) (PDB: 4G8A). Molecular dynamic simulation was applied to evaluate the dynamic behavior of vaccine-receptor complexes. Lastly, the binding free energies of the vaccine with receptors were estimated by using MMPB/GBSA methods. All of the aforementioned analyses concluded that the designed vaccine molecule as a good candidate to be used in experimental studies to disclose its immune protective efficacy in animal models.

12.
Vaccines (Basel) ; 10(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36298444

RESUMO

The emergence of antibiotic resistance in bacterial species is a major threat to public health and has resulted in high mortality as well as high health care costs. Burkholderia mallei is one of the etiological agents of health care-associated infections. As no licensed vaccine is available against the pathogen herein, using reverse vaccinology, bioinformatics, and immunoinformatics approaches, a multi-epitope-based vaccine against B. mallei was designed. In completely sequenced proteomes of B. mallei, 18,405 core, 3671 non-redundant, and 14,734 redundant proteins were predicted. Among the 3671 non-redundant proteins, 3 proteins were predicted in the extracellular matrix, 11 were predicted as outer membrane proteins, and 11 proteins were predicted in the periplasmic membrane. Only two proteins, type VI secretion system tube protein (Hcp) and type IV pilus secretin proteins, were selected for epitope prediction. Six epitopes, EAMPERMPAA, RSSPPAAGA, DNRPISINL, RQRFDAHAR, AERERQRFDA, and HARAAQLEPL, were shortlisted for multi-epitopes vaccine design. The predicted epitopes were linked to each other via a specific GPGPG linker and the epitopes peptide was then linked to an adjuvant molecule through an EAAAK linker to make the designed vaccine more immunologically potent. The designed vaccine was also found to have favorable physicochemical properties with a low molecular weight and fewer transmembrane helices. Molecular docking studies revealed vaccine construct stable binding with MHC-I, MHC-II, and TLR-4 with energy scores of -944.1 kcal/mol, -975.5 kcal/mol, and -1067.3 kcal/mol, respectively. Molecular dynamic simulation assay noticed stable dynamics of the docked vaccine-receptors complexes and no drastic changes were observed. Binding free energies estimation revealed a net value of -283.74 kcal/mol for the vaccine-MHC-I complex, -296.88 kcal/mol for the vaccine-MHC-II complex, and -586.38 kcal/mol for the vaccine-TLR-4 complex. These findings validate that the designed vaccine construct showed promising ability in terms of binding to immune receptors and may be capable of eliciting strong immune responses once administered to the host. Further evidence from experimentations in mice models is required to validate real immune protection of the designed vaccine construct against B. mallei.

13.
J Diabetes Metab Disord ; 21(1): 511-516, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35673506

RESUMO

Objective: Type 2 Diabetes is a glucose metabolic disorder occurred by insulin insensitivity in which folate metabolism plays an important role. it is believed that polymorphism of Methylenetetrahydrofolate reductase (MTHFR) C677T linked with type 2 diabetes mellitus. However, results are conflicted. therefore, in this study we re-examine the relationship between MTHFR C677T in type 2 diabetes mellitus patients. Methods: Present research work included 100 newly diagnosed type 2 diabetic mellitus (T2DM) cases and 100 healthy individuals. After the blood sample collection all the biochemical parameters were evaluated among the T2DM cases and healthy individuals. DNA and RNA extraction from whole blood was done to study the MTHFR gene polymorphism by allele specific polymerase chain reaction method and its expression analysis was done by quantitative real time polymerase chain reaction method. Results: The significant difference was observed in genotype distribution among case and control group (p=0.0002). Compared with wildtype CC genotype, CT heterozygous (OR=2.95, 95% Cl=1.62-5.38) and TT homozygous (OR=3.20, CI=1.79-5.73) suggest to have effect of MTHFR polymorphism on type 2 mellitus risk. Moreover, relative MTHFR mRNA expression was found for wild type CC genotype 3.02-fold, CT heterozygous genotype 2.57 fold and mutant TT homozygous genotype 0.50-fold which is down regulated (p<0.0001). Conclusion: Our results indicates that the polymorphism in MTHFR C677T plays significant role in type II diabetes risk. MTHFR CT heterozygous and mutant TT genotype showed reduced mRNA expression among the T2DM patients. However, large scale case-control studies are needed to strengthen such conclusion in the future.

14.
Gels ; 8(2)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35200463

RESUMO

Drug instillation via a topical route is preferred since it is desirable and convenient due to the noninvasive and easy drug access to different segments of the eye for the treatment of ocular ailments. The low dose, rapid onset of action, low or no toxicity to the local tissues, and constrained systemic outreach are more prevalent in this route. The majority of ophthalmic preparations in the market are available as conventional eye drops, which rendered <5% of a drug instilled in the eye. The poor drug availability in ocular tissue may be attributed to the physiological barriers associated with the cornea, conjunctiva, lachrymal drainage, tear turnover, blood-retinal barrier, enzymatic drug degradation, and reflex action, thus impeding deeper drug penetration in the ocular cavity, including the posterior segment. The static barriers in the eye are composed of the sclera, cornea, retina, and blood-retinal barrier, whereas the dynamic barriers, referred to as the conjunctival and choroidal blood flow, tear dilution, and lymphatic clearance, critically impact the bioavailability of drugs. To circumvent such barriers, the rational design of the ocular therapeutic system indeed required enriching the drug holding time and the deeper permeation of the drug, which overall improve the bioavailability of the drug in the ocular tissue. This review provides a brief insight into the structural components of the eye as well as the therapeutic challenges and current developments in the arena of the ocular therapeutic system, based on novel drug delivery systems such as nanomicelles, nanoparticles (NPs), nanosuspensions, liposomes, in situ gel, dendrimers, contact lenses, implants, and microneedles. These nanotechnology platforms generously evolved to overwhelm the troubles associated with the physiological barriers in the ocular route. The controlled-drug-formulation-based strategic approach has considerable potential to enrich drug concentration in a specific area of the eye.

15.
Vaccines (Basel) ; 10(10)2022 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-36298594

RESUMO

Staphylococcus hominis is a Gram-positive bacterium from the staphylococcus genus; it is also a member of coagulase-negative staphylococci because of its opportunistic nature and ability to cause life-threatening bloodstream infections in immunocompromised patients. Gram-positive and opportunistic bacteria have become a major concern for the medical community. It has also drawn the attention of scientists due to the evaluation of immune evasion tactics and the development of multidrug-resistant strains. This prompted the need to explore novel therapeutic approaches as an alternative to antibiotics. The current study aimed to develop a broad-spectrum, multi-epitope vaccine to control bacterial infections and reduce the burden on healthcare systems. A computational framework was designed to filter the immunogenic potent vaccine candidate. This framework consists of pan-genomics, subtractive proteomics, and immunoinformatics approaches to prioritize vaccine candidates. A total of 12,285 core proteins were obtained using a pan-genome analysis of all strains. The screening of the core proteins resulted in the selection of only two proteins for the next epitope prediction phase. Eleven B-cell derived T-cell epitopes were selected that met the criteria of different immunoinformatics approaches such as allergenicity, antigenicity, immunogenicity, and toxicity. A vaccine construct was formulated using EAAAK and GPGPG linkers and a cholera toxin B subunit. This formulated vaccine construct was further used for downward analysis. The vaccine was loop refined and improved for structure stability through disulfide engineering. For an efficient expression, the codons were optimized as per the usage pattern of the E coli (K12) expression system. The top three refined docked complexes of the vaccine that docked with the MHC-I, MHC-II, and TLR-4 receptors were selected, which proved the best binding potential of the vaccine with immune receptors; this was followed by molecular dynamic simulations. The results indicate the best intermolecular bonding between immune receptors and vaccine epitopes and that they are exposed to the host's immune system. Finally, the binding energies were calculated to confirm the binding stability of the docked complexes. This work aimed to provide a manageable list of immunogenic and antigenic epitopes that could be used as potent vaccine candidates for experimental in vivo and in vitro studies.

16.
J Neuroimmunol ; 356: 577597, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33964735

RESUMO

We enumerated conventional and innate lymphocyte populations in neonates with neonatal encephalopathy (NE), school-age children post-NE, children with cerebral palsy and age-matched controls. Using flow cytometry, we demonstrate alterations in circulating T, B and natural killer cell numbers. Invariant natural killer T cell and Vδ2+ γδ T cell numbers and frequencies were strikingly higher in neonates with NE, children post-NE and children with cerebral palsy compared to age-matched controls, whereas mucosal-associated invariant T cells and Vδ1 T cells were depleted from children with cerebral palsy. Upon stimulation ex vivo, T cells, natural killer cells and Vδ2 T cells from neonates with NE more readily produced inflammatory cytokines than their counterparts from healthy neonates, suggesting that they were previously primed or activated. Thus, innate and conventional lymphocytes are numerically and functionally altered in neonates with NE and these changes may persist into school-age.


Assuntos
Encefalopatias/sangue , Encefalopatias/diagnóstico , Paralisia Cerebral/sangue , Paralisia Cerebral/diagnóstico , Células T Matadoras Naturais/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/sangue , Encefalopatias/imunologia , Paralisia Cerebral/imunologia , Criança , Feminino , Seguimentos , Humanos , Recém-Nascido , Masculino , Células T Matadoras Naturais/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Estudantes , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
17.
Vaccines (Basel) ; 8(2)2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32560376

RESUMO

Background: the role of innate immunity in human sepsis must be fully clarified to identify potential avenues for novel immune adjuvant sepsis therapies. Methods: A prospective observational study was performed including patients with sepsis (septic group), infection without sepsis (infection group), and healthy controls (control group) in the setting of acute medical wards and intensive care units in a 1000-bed university hospital. A total of 42 patients with sepsis, 30 patients with infection, and 30 healthy controls were studied. The differentiation states of circulating mucosal associated invariant T (MAIT) cells and Natural Killer T (NKT) cells were characterised as naive (CD45RA+, CD197+), central memory (CD45RA-, CD197+), effector memory (CD45RA-, CD197-), or terminally differentiated (CD45RA+, CD197-). The differentiation states of circulating gamma-delta T lymphocytes were characterised as naive (CD45RA+, CD27+), central memory (CD45RA-, CD27+), effector memory (CD45RA-, CD27-), or terminally differentiated (CD45RA+, CD27-). The expression of IL-12 and IL-23 receptors, the transcription factors T-Bet and RORγt, and interferon-γ and IL-17a were analysed. Results: MAIT cell counts were lower in the septic group (p = 0.002) and the infection group (p < 0.001) than in the control group. The MAIT cell T-Bet expression in the infection group was greater than in the septic group (p = 0.012). The MAIT RORγt expression in the septic group was lower than in the control group (p = 0.003). The NK cell counts differed in the three groups (p < 0.001), with lower Natural Killer (NK) cell counts in the septic group (p < 0.001) and in the infection group (p = 0.001) than in the control group. The NK cell counts increased in the septic group in the 3 weeks following the onset of sepsis (p = 0.028). In lymphocyte stimulation experiments, fewer NK cells expressed T-Bet in the septic group than in the infection group (p = 0.002), and fewer NK cells expressed IFN-γ in the septic group than in the control group (p = 0.002). The NKT cell counts were lower in the septic group than both the control group (p = 0.05) and the infection group (p = 0.04). Fewer NKT cells expressed T-Bet in the septic group than in the infection group (p = 0.004). Fewer NKT cells expressed RORγt in the septic group than in the control group (p = 0.003). Fewer NKT cells expressed IFN-γ in the septic group than in both the control group (p = 0.002) and the infection group (p = 0.036). Conclusion: The clinical presentation of infection and or sepsis in patients is linked with a mosaic of changes in the innate lymphocyte Th1 and Th17 phenotypes. The manipulation of the innate lymphocyte phenotype offers a potential avenue for immune modulation in patients with sepsis.

18.
PLoS One ; 14(10): e0224276, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31658288

RESUMO

OBJECTIVE: The role of Th1 and Th17 lymphocyte responses in human infection and sepsis of elderly patients has yet to be clarified. DESIGN: A prospective observational study of patients with sepsis, infection only and healthy controls. SETTING: The acute medical wards and intensive care units in a 1000 bed university hospital. PATIENTS: 32 patients with sepsis, 20 patients with infection, and 20 healthy controls. Patients and controls were older than 65 years of age. Patients with recognised underlying immune compromise were excluded. METHODS: Phenotype, differentiation status and cytokine production by T lymphocytes were determined by flow cytometry. MEASUREMENTS: The differentiation states of circulating CD3+, CD4+, and CD8+ T cells were characterised as naive (CD45RA+, CD197+), central memory (CD45RA-, CD197+), effector memory (CD45RA-, CD197-), or terminally differentated (CD45RA+, CD197-). Expression of IL-12 and IL-23 receptors, and the transcription factors T-bet and RORγt, was analysed in circulating T lymphocytes. Expression of interferon- γ and IL-17A were analysed following stimulation in vitro. RESULTS: CD4+ T cells from patients with infection predominantly expressed effector-memory or terminally differentiated phenotypes but CD4+ T cells from patients with severe sepsis predominantly expressed naive phenotypes (p<0.0001). CD4+ T cells expressing IL-23 receptor were lower in patients with sepsis compared to patients with infection alone (p = 0.007). RORγt expression by CD4+ T cells was less frequent in patients with sepsis (p<0.001), whereas T-bet expressing CD8+ T cells that do not express RORγt was lower in the sepsis patients. HLA-DR expression by monocytes was lower in patients with sepsis. In septic patients fewer monocytes expressed IL-23. CONCLUSION: Persistent failure of T cell activation was observed in patients with sepsis. Sepsis was associated with attenuated CD8+Th1 and CD4+Th17 based lymphocyte response.


Assuntos
Hospitalização , Infecções/imunologia , Infecções/terapia , Sepse/imunologia , Sepse/terapia , Células Th1/patologia , Células Th17/patologia , Idoso , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Estudos de Casos e Controles , Feminino , Regulação da Expressão Gênica , Humanos , Infecções/metabolismo , Masculino , Receptores de Interleucina/metabolismo , Receptores de Interleucina-12/metabolismo , Sepse/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa