Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Ecotoxicol Environ Saf ; 246: 114128, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36193587

RESUMO

Arsenic (As) contamination is continuously increasing in the groundwaters and soils around the world causing toxicity in the plants with a detrimental effect on physiology, growth, and yield. In a hydroponic system, thirty-day-old plants of Trigonella foenum-graecum were subjected to 0, 50, or 100 µM NaHAsO40.7 H2O for 10 days. The magnitude of oxidative stress increased, whereas growth indices and photosynthetic parameters decreased in a dose-dependent manner. The efficiency of photosystem II in terms of Hill reaction activity (HRA) or chlorophyll-a was adversely affected by As stress. The antioxidant potential of plants regarding ferric reducing antioxidant power (FRAP) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) assays was enhanced, indicating the augmented resistance mechanism in plants to counter As stress. The metabolite analysis of leaf extracts revealed many As responsive metabolites including amino acids, organic acids, sugars/polyols, and others. Phenylalanine and citrulline were highly accumulated at 50 or 100 µM As, salicylic acid accumulated more at 50 µM of As while ascorbic acid notably increased at 100 µM of As. At 50 or 100 µM As, the glucose and fructose contents increased while the sucrose content decreased. At both As doses, tagatose and glucitol contents were 13 times higher than controls. Varied accumulation of metabolites could be associated with the different As doses that represent the range of tolerance in T. foenum-graecum towards As toxicity. Pathway analysis of metabolites revealed that amino acid and carbohydrate metabolism and the citrate cycle play important roles under As stress. This study helps in a better metabolomic understanding of the dose-dependent toxicity and response of As in T. foenum-graecum.


Assuntos
Arsênio , Trigonella , Antioxidantes/metabolismo , Arsênio/metabolismo , Extratos Vegetais/farmacologia , Estresse Oxidativo , Fotossíntese
2.
Molecules ; 27(6)2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35335185

RESUMO

This is the first attempt to evaluate the impact of four salinity levels on the color parameters, pigments, polyphenols, flavonoids, and antioxidant capacities of four promising A. lividus genotypes. The color parameters, such as the yellowness/blueness (b*) and the chroma (C*); the antioxidant components, such as the polyphenols and flavonoids; and the antioxidant capacities of the leaves were remarkably increased by 39, 1, 5, 10 and 43%, respectively, at 50 mM of NaCl, and by 55, 5, 60, 34, 58 and 82%, respectively, at 100 mM NaCl concentrations. The green tower and SA6 genotypes were identified as tolerant varieties. The total phenolic content (TPC) and the total flavonoid content (TFC) played vital roles in scavenging reactive oxygen species (ROS), and they would be beneficial for the human diet and would serve as good antioxidants for the prevention of aging, and they are also essential to human health. A correlation study revealed the strong antioxidant capacities of the pigments and antioxidant components that were studied. It was revealed that A. lividus could tolerate a certain level of salinity stress without compromising the antioxidant quality of the final product. Taken together, our results suggest that A. lividus could be a promising alternative crop for farmers, especially in saline-prone areas in the tropical and subtropical regions.


Assuntos
Amaranthus , Polifenóis , Antioxidantes/análise , Flavonoides , Humanos , Pigmentação , Folhas de Planta/química , Polifenóis/análise , Polifenóis/farmacologia , Estresse Salino , Verduras
3.
Molecules ; 26(19)2021 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-34641534

RESUMO

Spodoptera litura Fab. is a polyphagous pest causing damage to many agriculture crops leading to yield loss. Recurrent usage of synthetic pesticides to control this pest has resulted in resistance development. Plant-derived diterpenoid compound andrographolide was isolated from the leaves of Andrographis paniculata. It was analysed by gas chromatography-mass spectroscopy and quantified by HPLC. Nutritional indices and digestive enzymatic profile were evaluated. Third, fourth and fifth instar larvae were treated with different concentrations of andrographolide. At 3, 6 and 9 ppm-treated concentrations the larvae showed decreased RGR, RCR, ECI, ECD values with adverse increase in AD. The digestive enzymes were significantly inhibited when compared with control. Conspicuously, andrographolide showed pronounced mortality of S. litura by inhibition of enzyme secretion and intake of food. The binding ability of andrographolide with CYTP450 showed high affinity with low binding energy. Andrographolide has the potential to be exploited as a biocontrol agent against S. litura as an eco-friendly pesticide.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Diterpenos/farmacologia , Proteínas de Insetos/metabolismo , Inseticidas/farmacologia , Spodoptera/efeitos dos fármacos , Amilases/metabolismo , Andrographis/química , Animais , Diterpenos/isolamento & purificação , Diterpenos/metabolismo , Diterpenos/toxicidade , Relação Dose-Resposta a Droga , Inativação Metabólica/efeitos dos fármacos , Inseticidas/isolamento & purificação , Inseticidas/metabolismo , Inseticidas/toxicidade , Larva/efeitos dos fármacos , Lipase/metabolismo , Simulação de Acoplamento Molecular , Peptídeo Hidrolases/metabolismo
4.
Ecotoxicol Environ Saf ; 201: 110822, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32534334

RESUMO

Boron (B) toxicity is an important abiotic constraint that limits crop productivity mainly in arid and semi-arid areas of the world. High levels of B in soil disturbs several physiological and biochemical processes in plant. The aim of this study was to investigate the function of melatonin (Mel) in the regulation of carbohydrate and proline (Pro) metabolism, photosynthesis process and antioxidant system of wheat seedlings under B toxicity conditions. High levels of B inhibited net photosynthetic rate (PN), stomatal conductance (gs), content of chlorophyll (Chl) a, b, δ-aminolevulinic acid (δ-ALA), nitrogen (N) and phosphorus (P), and increased accumulation of B, Chl degradation and activity of chlorophyllase (Chlase; a Chl degrading enzyme), and downregulated the activity of enzymes (δ-ALAD; δ-aminolevulinic acid dehydratase) involved in the biosynthesis of photosynthesis pigments, photosynthesis (carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase) and carbohydrate metabolism (cell wall invertase, CWI) in wheat seedlings. Also, high levels of B caused oxidative damage by increasing the content of malondialdehyde, superoxide anion and H2O2, and activity of glycolate oxidase (an H2O2-producing enzyme) in leaves of seedlings. However, foliar application of Mel significantly improved photosynthetic pigments concentration by increasing δ-ALA, δ-ALAD and decreasing Chl degradation and Chlase activity and led to an increase of plant growth attributes under both B toxicity and non-toxicity conditions. Under normal and B toxicity conditions, exogenous Mel also improved content of N, P, total soluble carbohydrates (TSCs) and Pro, and upregulated activity of CWI and Δ1-pyrroline-5-carboxylate synthetase. Mel significantly suppressed the adverse effects of excess B by alleviating cellular oxidative damage through enhanced reactive oxygen species scavenging by superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and lipoxygenase, and content of total phenolic compounds (TPC), ascorbate and reduced glutathione. These results postulate that Mel induced plant defense mechanisms by enhancing Pro, TSCs, TPC, nutrients (N and P) uptake and enzymatic and non-enzymatic antioxidants.


Assuntos
Antioxidantes/metabolismo , Boro/toxicidade , Melatonina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Triticum/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
5.
Ecotoxicol Environ Saf ; 190: 110152, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31927357

RESUMO

Nano-titanium dioxide (nTiO2) has been reported to improve tolerance of plants against different environmental stresses by modulating various physiological and biochemical processes. Nitric oxide (NO) has been shown to act as an important stress signaling molecule during plant responses to abiotic stresses. The present work was planned to investigate the involvement of endogenous NO in nTiO2-induced activation of defense system of fava bean (Vicia faba L.) plants under water-deficit stress (WDS) conditions. Water-suffered plants showed increased concentration of hydrogen peroxide (H2O2) and superoxide (O2-) content coupled with increased electrolyte leakage and lipid peroxidation which adversely affected nitrate reductase (NR) activity, chlorophyll content and growth of the plants. However, application of 15 mg L-1 nTiO2 to stressed plants significantly induced NR activity and synthesis of NO which elevated enzymatic and non-enzymatic defense system of the stressed plants and suppressed the generation of H2O2 and O2- content, leakage of electrolytes, and lipid peroxidation. Application of nTiO2, in association with NO, also enhanced the accumulation of osmolytes (proline and glycine betaine) that assisted the stressed plants in osmotic adjustment as witnessed by improved hydration level of the plants. Involvement of NO in nTiO2-induced activation of defense system was confirmed with NO scavenger cPTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide] which caused recurrence of WDS.


Assuntos
Desidratação , Nanopartículas/toxicidade , Óxido Nítrico/metabolismo , Estresse Fisiológico , Titânio/toxicidade , Vicia faba/efeitos dos fármacos , Clorofila/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Superóxidos/metabolismo , Vicia faba/metabolismo
6.
Ecotoxicol Environ Saf ; 182: 109436, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31325808

RESUMO

Copper (Cu) is an essential yet toxic metal, which holds the ability to induce production of reactive oxygen species (ROS) in living cells resulting in severe abiotic stress. Therefore, the aim of our current study was to investigate the effects of extrinsically added ascorbic acid (AA) on oxidative stress indicators and redox homoeostasis remediators in 7-day-old seedlings and 60-day-old plants of Brassica juncea L. (hyper-accumulator species) subjected to Cu (II) stress. Our findings showed that seed germination ballooned by 55.4% in Cu (II) stressed seedlings upon addition of 50 mg l-1 AA. Copper content accelerated in stressed seedlings and plants; however, a negative interaction was seen upon addition of AA. Both seedlings and plants exposed to Cu (II) accumulated free radicals such as H2O2 and superoxide anion, however, the addition of AA in the growth media decreased H2O2 and superoxide anion generation indicating ROS detoxification. Confocal microscopy also revealed improved cell viability and reduced H2O2 content because of enhanced antioxidant activity upon addition of AA as a protective chelate. Antioxidants such as ascorbate, flavonoids and glutathione rose significantly in Cu (II) stressed seedlings and plants in the presence of AA. Protein content increased by 51.3% and 47.5% in seedlings and plants growing in a binary combination of 100 mg l-1 Cu and AA (75 mg l-1 and 25 mg l-1), respectively. Sharp peaks for stress indicator amino acids such as cysteine and proline were seen in spectral analysis of B. juncea seedlings exposed to Cu (II). Protein thiols increased in plants grown in various binary doses Cu (II) and AA. This study provides sufficient evidence regarding the protective role of ascorbic acid (AA) against ROS and its suggested use as a soil amendment against Cu (II) toxicity in B. juncea.


Assuntos
Ácido Ascórbico/metabolismo , Cobre/toxicidade , Mostardeira/fisiologia , Poluentes do Solo/toxicidade , Antioxidantes/metabolismo , Cobre/metabolismo , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Mostardeira/efeitos dos fármacos , Oxirredução , Estresse Oxidativo/fisiologia , Prolina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/efeitos dos fármacos , Superóxido Dismutase/metabolismo
7.
Ecotoxicol Environ Saf ; 174: 283-294, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30844668

RESUMO

The phytohormone jasmonic acid (JA) plays an imperative role in plants by modulating the activity of their antioxidative defense system under stress conditions. Here, we explored the role of JA-induced alterations in the growth and transcript levels of antioxidative enzymes in tomato seedlings exposed to different Pb concentrations (0.25, 0.50, and 0.75 mM). Pb treatment caused a dose-dependent reduction in their root and shoot lengths. Treatment of 0.75 mM Pb showed an increase in the contents of malondialdehyde (MDA), superoxide anion (O2•-), and hydrogen peroxide (H2O2) as compared to the untreated seedlings. Pb uptake was enhanced with an increase in Pb concentration. The seeds primed with JA showed reduction in Pb uptake and improvement in growth under Pb toxicity. The seedlings treated with both JA (100 nM) and Pb (0.75 mM) showed a decline in the levels of MDA, O2•-, and H2O2 as compared to the seedlings treated with 0.75 mM Pb alone. These results suggested that JA (100 nM) mitigated the oxidative damage by lowering the expression of the RBO and P-type ATPase transporter genes and by modulating antioxidative defense system activity. The biochemical and molecular analyses showed that JA plays a crucial role in plant defense responses against Pb stress.


Assuntos
Ciclopentanos/farmacologia , Chumbo/toxicidade , Oxilipinas/farmacologia , ATPases do Tipo-P/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Imunidade Vegetal/efeitos dos fármacos , Poluentes do Solo/toxicidade , Solanum lycopersicum/efeitos dos fármacos , Antioxidantes/metabolismo , Relação Dose-Resposta a Droga , Solanum lycopersicum/enzimologia , Solanum lycopersicum/imunologia
8.
J Environ Manage ; 242: 199-209, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31039529

RESUMO

Drinking water with excessive concentration levels of arsenic (As) is a great threat to human health. A hydrochemical approach was employed in 50 drinking water samples (collected from Kushtia district, Bangladesh) to examine the occurrence of geogenic As and the presence of trace metals (TMs), as well as the factors controlling As release in aquifers. The results reveal that the drinking water of shallow aquifers is highly contaminated by As (6.05-590.7 µg/L); 82% of samples were found to exceed the WHO recommended limit (10 µg/L) for potable water, but the concentrations of Si, B, Mn, Sr, Se, Ba, Fe, Cd, Pb, F, U, Ni, Li, and Cr were within safe limits. The Ca-HCO3-type drinking water was identified as having high contents of As, pH and HCO3-, a medium-high content EC, and low concentrations of NO3-, SO42-, K+, and Cl-. The significant correlation between As and NO3- indicates that NO3- might be attributed to the use of phosphate fertilizers and a factor responsible for enhancing As in aquifers. The study also reports that the occurrence of high As and the presence of TMs in drinking water may be a result of local anthropogenic activities, such as irrigation, intensive land use and the application of agrochemicals. The insignificant correlation between As and SO42- demonstrated that As is released from SO42- minerals under reducing conditions. An elevated pH value along with decoupling of As and HCO3- plays a vital role in mobilizing As to aquifer systems. Moreover, the positive relationship between As and Si indicated that As is transported in the biogeochemical environment. The reductive suspension of Mn(IV)-oxyhydroxides also accelerated the As mobilization process. Over exploitation of tube-well water and the competitive ion exchange process are also responsible for the release of As in aquifers.


Assuntos
Arsênio , Água Potável , Água Subterrânea , Poluentes Químicos da Água , Bangladesh , Monitoramento Ambiental , Humanos , Metais
9.
Molecules ; 24(4)2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30781352

RESUMO

In this study, for the environmental development, the antifungal, antibacterial, and antioxidant activities of a water extract of flowers from Acacia saligna (Labill.) H. L. Wendl. were evaluated. The extract concentrations were prepared by dissolving them in 10% DMSO. Wood samples of Melia azedarach were treated with water extract, and the antifungal activity was examined at concentrations of 0%, 1%, 2%, and 3% against three mold fungi; Fusarium culmorum MH352452, Rhizoctonia solani MH352450, and Penicillium chrysogenum MH352451 that cause root rot, cankers, and green fruit rot, respectively, isolated from infected Citrus sinensis L. Antibacterial evaluation of the extract was assayed against four phytopathogenic bacteria, including Agrobacterium tumefaciens, Enterobacter cloacae, Erwinia amylovora, and Pectobacterium carotovorum subsp. carotovorum, using the micro-dilution method to determine the minimum inhibitory concentrations (MICs). Further, the antioxidant capacity of the water extract was measured via 2,2'-diphenylpicrylhydrazyl (DPPH). Phenolic and flavonoid compounds in the water extract were analyzed using HPLC: benzoic acid, caffeine, and o-coumaric acid were the most abundant phenolic compounds; while the flavonoid compounds naringenin, quercetin, and kaempferol were identified compared with the standard flavonoid compounds. The antioxidant activity of the water extract in terms of IC50 was considered weak (463.71 µg/mL) compared to the standard used, butylated hydroxytoluene (BHT) (6.26 µg/mL). The MIC values were 200, 300, 300, and 100 µg/mL against the growth of A. tumefaciens, E. cloacae, E. amylovora, and P. carotovorum subsp. carotovorum, respectively, which were lower than the positive control used (Tobramycin 10 µg/disc). By increasing the extract concentration, the percentage inhibition of fungal mycelial was significantly increased compared to the control treatment, especially against P. chrysogenum, suggesting that the use of A. saligna flower extract as an environmentally friendly wood bio-preservative inhibited the growth of molds that cause discoloration of wood and wood products.


Assuntos
Acacia/química , Anti-Infecciosos/farmacologia , Antioxidantes/farmacologia , Flavonoides/farmacologia , Flores/química , Fenóis/farmacologia , Bactérias/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Extratos Vegetais/farmacologia
10.
Int J Mol Sci ; 19(12)2018 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-30544896

RESUMO

Hydrogen sulfide (H2S) has emerged as an important signaling molecule and plays a significant role during different environmental stresses in plants. The present work was carried out to explore the potential role of H2S in reversal of dehydration stress-inhibited O-acetylserine (thiol) lyase (OAS-TL), l-cysteine desulfhydrase (LCD), and d-cysteine desulfhydrase (DCD) response in arugula (Eruca sativa Mill.) plants. Dehydration-stressed plants exhibited reduced water status and increased levels of hydrogen peroxide (H2O2) and superoxide (O2•-) content that increased membrane permeability and lipid peroxidation, and caused a reduction in chlorophyll content. However, H2S donor sodium hydrosulfide (NaHS), at the rate of 2 mM, substantially reduced oxidative stress (lower H2O2 and O2•-) by upregulating activities of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and increasing accumulation of osmolytes viz. proline and glycine betaine (GB). All these, together, resulted in reduced membrane permeability, lipid peroxidation, water loss, and improved hydration level of plants. The beneficial role of H2S in the tolerance of plants to dehydration stress was traced with H2S-mediated activation of carbonic anhydrase activity and enzyme involved in the biosynthesis of cysteine (Cys), such as OAS-TL. H2S-treated plants showed maximum Cys content. The exogenous application of H2S also induced the activity of LCD and DCD enzymes that assisted the plants to synthesize more H2S from accumulated Cys. Therefore, an adequate concentration of H2S was maintained, that improved the efficiency of plants to mitigate dehydration stress-induced alterations. The central role of H2S in the reversal of dehydration stress-induced damage was evident with the use of the H2S scavenger, hypotaurine.


Assuntos
Brassicaceae/enzimologia , Brassicaceae/metabolismo , Carbono-Oxigênio Liases/metabolismo , Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Desidratação , Sulfetos/metabolismo
11.
Heliyon ; 10(12): e33078, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38988560

RESUMO

The issue of arsenic (As) contamination in the environment has become a critical concern, impacting both human health and ecological equilibrium. Addressing this challenge requires a comprehensive strategy encompassing water treatment technologies, regulatory measures for industrial effluents, and the implementation of sustainable agricultural practices. In this study, diverse strategies were explored to enhance As accumulation in the presence of Acinetobacter bouvetii while safeguarding the host from the toxic effects of arsenate exposure. The sunflower seedlings associated with A. bouvetii demonstrated a favorable relative growth rate (RGR) and net assimilation rate (NAR) even less than 100 ppm of As stress. Remarkably, the NAR and RGR of A. bouvetii-associated seedlings outperformed those of control seedlings cultivated without A. bouvetii in As-free conditions. Additionally, a markedly greater buildup of bio-transformed As was observed in A. bouvetii-associated seedlings (P = 0.05). An intriguing observation was the normal levels of reactive oxygen species (ROS) in A. bouvetii-associated seedlings, along with elevated activities of key enzymatic antioxidants like catalases (CAT), ascorbate peroxidase (APX), superoxide dismutase (SOD), and peroxidases (POD), along with non-enzymatic antioxidants (phenols and flavonoids). This coordinated antioxidant defense system likely contributed to the improved survival and growth of the host plant species amidst As stress. A. bouvetii not only augmented the growth of the host plants but also facilitated the uptake of bio-transformed As in the contaminated medium. The rhizobacterium's modulation of various biochemical and physiological parameters indicates its role in ensuring the better survival and progression of the host plants under As stress.

12.
J Hazard Mater ; 464: 132956, 2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976853

RESUMO

Global soil acidification is increasing, enlarging aluminum (Al) availability in soils, leading to reductions in plant growth. This study investigates the effect of Al stress on the leaf growth zones of Rye (Secale cereale, cv Beira). Kinematic analysis showed that the effect of Al on leaf growth rates was mainly due to a reduced cell production rate in the meristem. Transcriptomic analysis identified 2272 significantly (log2fold > |0.5| FDR < 0.05) differentially expressed genes (DEGs) for Al stress. There was a downregulation in several DEGs associated with photosynthetic processes and an upregulation in genes for heat/light response, and H2O2 production in all leaf zones. DEGs associated with heavy metals and malate transport were increased, particularly, in the meristem. To determine the putative function of these processes in Al tolerance, we performed biochemical analyses comparing the tolerant Beira with an Al sensitive variant RioDeva. Beira showed improved sugar metabolism and redox homeostasis, specifically in the meristem compared to RioDeva. Similarly, a significant increase in malate and citrate production, which are known to aid in Al detoxification in plants, was found in Beira. This suggests that Al tolerance in Rye is linked to its ability for Al exclusion from the leaf meristem.


Assuntos
Alumínio , Secale , Secale/genética , Secale/metabolismo , Alumínio/toxicidade , Malatos/metabolismo , Malatos/farmacologia , Peróxido de Hidrogênio/metabolismo , Oxirredução , Folhas de Planta/metabolismo , Açúcares
13.
Sci Rep ; 14(1): 11100, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750032

RESUMO

The growth and productivity of crop plants are negatively affected by salinity-induced ionic and oxidative stresses. This study aimed to provide insight into the interaction of NaCl-induced salinity with Azolla aqueous extract (AAE) regarding growth, antioxidant balance, and stress-responsive genes expression in wheat seedlings. In a pot experiment, wheat kernels were primed for 21 h with either deionized water or 0.1% AAE. Water-primed seedlings received either tap water, 250 mM NaCl, AAE spray, or AAE spray + NaCl. The AAE-primed seedlings received either tap water or 250 mM NaCl. Salinity lowered growth rate, chlorophyll level, and protein and amino acids pool. However, carotenoids, stress indicators (EL, MDA, and H2O2), osmomodulators (sugars, and proline), antioxidant enzymes (CAT, POD, APX, and PPO), and the expression of some stress-responsive genes (POD, PPO and PAL, PCS, and TLP) were significantly increased. However, administering AAE contributed to increased growth, balanced leaf pigments and assimilation efficacy, diminished stress indicators, rebalanced osmomodulators and antioxidant enzymes, and down-regulation of stress-induced genes in NaCl-stressed plants, with priming surpassing spray in most cases. In conclusion, AAE can be used as a green approach for sustaining regular growth and metabolism and remodelling the physio-chemical status of wheat seedlings thriving in salt-affected soils.


Assuntos
Antioxidantes , Regulação da Expressão Gênica de Plantas , Extratos Vegetais , Tolerância ao Sal , Plântula , Triticum , Triticum/efeitos dos fármacos , Triticum/genética , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Tolerância ao Sal/genética , Tolerância ao Sal/efeitos dos fármacos , Antioxidantes/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/genética , Plântula/metabolismo , Extratos Vegetais/farmacologia , Gleiquênias/efeitos dos fármacos , Gleiquênias/genética , Gleiquênias/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Salinidade , Cloreto de Sódio/farmacologia , Estresse Oxidativo/efeitos dos fármacos
14.
Plant Physiol Biochem ; 207: 108421, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38335887

RESUMO

Plant fungal diseases impose a formidable challenge for global agricultural productivity, a meticulous examination of host-pathogen interactions. In this intricate study, an exhaustive investigation was conducted on infected tomatoes obtained from Egyptian fields, leading to the precise molecular identification of the fungal isolate as Alternaria alternata (OP881811), and the isolate showed high identity with Chinese isolates (ON973896 and ON790502). Subsequently, fourteen diverse tomato cultivars; Cv Ferment, Cv 103, Cv Damber, Cv 186, Cv 4094, Cv Angham, Cv N 17, Cv Gesma, Cv 010, Cv branch, cv 2020, Cv 023, Cv Gana and Cv 380 were meticulously assessed to discern their susceptibility levels upon inoculation with Alternaria alternata. Thorough scrutiny of disease symptom manifestation and the extent of tomato leaf damage ensued, enabling a comprehensive evaluation of cultivar responses. Results unveiled a spectrum of plant susceptibility, with three cultivars exhibiting heightened vulnerability (Cv Ferment, Cv 103 and Cv Damber), five cultivars displaying moderate susceptibility (Cv 186, Cv 4094, Cv Angham, Cv N 17 and Cv Gesma), and six cultivars demonstrating remarkable resilience to the pathogen (Cv 010, Cv branch, cv, 2020; Cv 023, Cv Gana and Cv 380). In order to gain a thorough understanding of the underlying physiological patterns indicative of plant resistance against A. alternata, an in-depth exploration of polyphenols, flavonoids, and antioxidant enzymes ensued. These key indicators were closely examined, offering valuable insights into the interplay between plant physiology and pathogen response. Robust correlations emerged, with higher contents of these compounds correlating with heightened susceptibility, while lower levels were indicative of enhanced plant tolerance. In tandem with the physiological assessment, a thorough investigation of four pivotal defensive genes (PR5, PPO, PR3, and POX) was undertaken, employing cutting-edge Real-Time PCR technology. Gene expression profiles displayed intriguing variations across the evaluated tomato cultivars, ultimately facilitating the classification of cultivars into distinct groups based on their levels of resistance, moderate susceptibility, or heightened sensitivity. By unravelling the intricate dynamics of plant susceptibility, physiological responses, and patterns of gene expression, this comprehensive study paves the way for targeted strategies to combat plant fungal diseases. The findings contribute valuable insights into host-pathogen interactions and empower agricultural stakeholders with the knowledge required to fortify crop resilience and safeguard global food security.


Assuntos
Micoses , Solanum lycopersicum , Solanum lycopersicum/genética , Estresse Fisiológico , Alternaria
15.
Heliyon ; 10(10): e30929, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38765047

RESUMO

Among the range of severe plant diseases, bacterial soft rot caused by Erwinia carotovora is a significant threat to crops. This study aimed to examine the varying response patterns of distinct potato cultivars to the influence of E. carotovora. Furthermore, it seeks to highlight the potential role of salicylic acid (SA) and methyl jasmonate (MeJA) in stimulating the antioxidant defence system. We collected eight bacterial isolates from diseased and rotted tubers which were morphologically and physiologically identified as E. carotovora subsp. carotovora. We conducted a greenhouse experiment to analyse the antioxidant responses of three different potato cultivars (Diamont, Kara, and Karros) at various time intervals (2, 4, 6, 8, 12, and 24 h) after bacterial infection (hpi). We assessed the extent of disease damage by applying a foliar spray of 0.9 mM salicylic acid (SA) and 70 µM methyl jasmonate (MeJA). Inoculating with Ecc led to an increase in total phenolic levels, as well as the activities and gene expression of phenylalanine ammonia-lyase (PAL), polyphenol oxidase (PPO) and peroxidase (POX) as time progressed. Additionally, the application of SA and MeJA resulted in a further increase relative to the diseased treatments. The Karros cultivar, unlike the Diamont and Kara cultivars, demonstrated the highest expression levels of PAL, PPO and POX through inoculation, reflecting its higher levels of activity and resistance. Furthermore, the genetic response of potato cultivars to infection at 0 hpi varied depending on their susceptibility. The examination of the rate of PAL activity upregulation following SA or MeJA stimulation clarifies the cultivars' susceptibility over time. In conclusion, the study identified E. carotovora subsp. carotovora as the most virulent isolate causing soft rot disease in potato tubers. It further revealed that the Karros cultivar displayed superior resistance with high activities and gene expression of PAL, PPO and POX, while the cv. Diamont exhibited sensitivity. Additionally, foliar exposure to SA and MeJA induced antioxidant responses, enhancing the potato plants' resistance against Ecc pathogenesis and overall plant defence.

16.
Environ Sci Pollut Res Int ; 30(1): 884-898, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35907074

RESUMO

Arsenic (As) traces have been reported worldwide in vegetables and crops cultivated in As-polluted soils. Being carcinogenic, the presence of As in edibles is of great concern as it ultimately reaches humans and animals through the food chain. Besides, As toxicity adversely affects the growth, physiology, metabolism, and productivity of crops. In the present study, Trigonella foenum-graecum (Fenugreek) was exposed to the As stress (0, 50, 100, and 150 µM sodium arsenate) for a week. Further, evaluation of As accumulation in roots and shoots, magnitude and visualization of oxyradicals, and thiol-based defence offered by Fenugreek was assessed. The root and leaf accumulated 258-453 µg g-1 dry wt (DW) and 81.4-102.1 µg g-1 DW of As, respectively. An arsenic-mediated decline in the growth index and increase in oxidative stress was noted. Arsenic stress modulated the content of thiol compounds; especially cysteine content increased from 0.36 to 0.43 µmole g-1 FW protein was noted. Random Amplified Polymorphic DNA (RAPD)-based analysis showed DNA damage in As-treated plants. Health risk assessment parameters showed that As concentration in the consumable plant shoot was below the critical hazard level (hazard quotient < 1). Moreover, T. foenum-graecum showed varied responses to As-induced oxidative stress with applied concentrations (150 µM being more toxic than lower concentrations). In addition, the RAPD profile and level of thiol compounds were proved significant biomarkers to assess the As toxicity in plants. The conclusion of this study will help users of fenugreek to have a clue and create awareness regarding the consumption.


Assuntos
Arsênio , Trigonella , Humanos , Animais , Arsênio/toxicidade , Arsênio/metabolismo , Técnica de Amplificação ao Acaso de DNA Polimórfico , Extratos Vegetais/farmacologia , Dano ao DNA , Compostos de Sulfidrila/metabolismo
17.
ACS Omega ; 8(30): 27597-27611, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37546587

RESUMO

In plants, ATP-binding cassette (ABC) transporters facilitate the movement of substrates across membranes using ATP for growth, development, and defense. Soils contaminated with toxic metals such as cadmium (Cd) and mercury (Hg) might adversely affect the metabolism of plants and humans. In this study, a phylogenetic relationship among soybeans' (Glycine max) ATP binding cassette (GmABCs) and other plant ABCs was analyzed using sequence information, gene structure, chromosomal distribution, and conserved motif-domain. The ontology of GmABCs indicated their active involvement in trans-membrane transport and ATPase activity. Thirty-day-old soybean plants were exposed to 100 µM CdCl2 and 100 µM HgCl2 for 10 days. Physiological and biochemical traits were altered under stress conditions. Compared to Control, GmABC transporter genes were differentially expressed in response to Cd and Hg. The qRT-PCR data showed upregulation of seven ABC transporter genes in response to Cd stress and three were downregulated. On the other hand, Hg stress upregulated four GmABC genes and downregulated six. It could be concluded that most of the ABCB and ABCG subfamily members were actively involved in heavy metal responses. Real-time expression studies suggest the function of specific ABC transporters in Cd and Hg stress response and are helpful in future research to develop stress-tolerant varieties of soybean.

18.
Sci Rep ; 12(1): 7167, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504974

RESUMO

The sustainability of the rice-wheat system is threatened due to the deterioration of soil health and emergence of new challenges of climate change caused by low nutrient use efficiency and large scale burning of crop residues. The conservation agriculture based on tillage intensity, crop residue retention and raising green manuring (GM) crops during the intervening period between wheat harvest and rice establishment offers opportunities for restoration of phosphorus (P) dynamics and stimulate phosphatase activities within the macro-and micro-aggregates. Phosphorus and phosphatase activities in the soil aggregates affected by different residue management practices remain poorly understood. Thus, soil samples were obtained after a five-year field experiment to identify the effect of tillage, green manure and residue management on aggregate-associated phosphorus fractions. Four main plot treatments in rice included combination of wheat straw and GM were conventional till puddled transplanted rice (PTR) with no wheat straw (PTRW0), PTR with 25% wheat stubbles retained (PTRW25), PTR without wheat straw and GM (PTRW0 + GM), and PTR with wheat stubbles and GM (PTRW25 + GM). Three sub-plots treatments in the successive wheat crop were conventional tillage (CT) with rice straw removed (CTWR0), zero tillage (ZT) with rice straw removed (ZTWR0) and ZT with rice straw retained as surface mulch (ZTWR100). Results of the present study revealed significantly higher phosphorus fractions (HCl-P, NaHCO3-Pi and NaOH-Po) in treatment PTRW25 + GM and ZTWR100 compared with PTRW0/CTWR0 within both macro- and micro-aggregates. The total phosphorus (P), available P, alkaline phosphatase and phytin-P were significantly higher under ZTWR100 than CTWR0. The principal component analysis identified NaOH-Po, NaHCO3-Pi and HCl-P as the dominant and reliable indicators for evaluating P transformation within aggregates under conservation agriculture-based practices.


Assuntos
Oryza , Esterco , Monoéster Fosfórico Hidrolases , Fósforo/análise , Hidróxido de Sódio/análise , Solo/química , Triticum
19.
Front Plant Sci ; 13: 852851, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35646024

RESUMO

The unprecedented rise in the human population has increased pressure on agriculture production. To enhance the production of crops, farmers mainly rely on the use of chemical fertilizers and pesticides, which have, undoubtedly, increased the production rate but at the cost of losing sustainability of the environment in the form of genetic erosion of indigenous varieties of crops and loss of fertile land. Therefore, farming practices need to upgrade toward the use of biological agents to maintain the sustainability of agriculture and the environment. In this context, using microbial inoculants and amino acids may present a more effective, safer, economical, and sustainable alternative means of realizing higher productivity of crops. Therefore, field experiments were performed on chickpea for two succeeding years using Rhizobium and L-methionine (at three levels, i.e., 5, 10, and 15 mg L-1) separately and in combinations. The results show that the application of Rhizobium and all the three levels of L-methionine increased the growth and yield of chickpea. There was a higher response to a lower dose of L-methionine, i.e., 5 mg L-1. It has been found that maximum grain yield (39.96 and 34.5% in the first and second years, respectively) of chickpea was obtained with the combined use of Rhizobium and L-methionine (5 mg L-1). This treatment was also the most effective in enhancing nodule number (91.6 and 58.19%), leghemoglobin (161.1 and 131.3%), and protein content (45.2 and 45%) of plants in both years. Likewise, photosynthetic pigments and seed chemical composition were significantly improved by Rhizobium inoculation. However, these effects were prominent when Rhizobium inoculation was accompanied by L-methionine. In conclusion, utilizing the potential of combined use of L-methionine and microbial inoculant could be a better approach for developing sustainable agriculture production.

20.
PLoS One ; 17(6): e0267939, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35679266

RESUMO

Plant growth and productivity are limited by the severe impact of salt stress on the fundamental physiological processes. Silicon (Si) supplementation is one of the promising techniques to improve the resilience of plants under salt stress. This study deals with the response of exogenous Si applications (0, 2, 4, and 6 mM) on growth, gaseous exchange, ion homeostasis and antioxidant enzyme activities in spinach grown under saline conditions (150 mM NaCl). Salinity stress markedly reduced the growth, physiological, biochemical, water availability, photosynthesis, enzymatic antioxidants, and ionic status in spinach leaves. Salt stress significantly enhanced leaf Na+ contents in spinach plants. Supplementary foliar application of Si (4 mM) alleviated salt toxicity, by modulating the physiological and photosynthetic attributes and decreasing electrolyte leakage, and activities of SOD, POD and CAT. Moreover, Si-induced mitigation of salt stress was due to the depreciation in Na+/K+ ratio, Na+ ion uptake at the surface of spinach roots, and translocation in plant tissues, thereby reducing the Na+ ion accumulation. Foliar applied Si (4 mM) ameliorates ionic toxicity by decreasing Na+ uptake. Overall, the results illustrate that foliar applied Si induced resistance against salinity stress in spinach by regulating the physiology, antioxidant metabolism, and ionic homeostasis. We advocate that exogenous Si supplementation is a practical approach that will allow spinach plants to recover from salt toxicity.


Assuntos
Salinidade , Silício , Antioxidantes/metabolismo , Fertilização , Silício/metabolismo , Silício/farmacologia , Sódio/metabolismo , Spinacia oleracea/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa