Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 167(2): 341-354.e12, 2016 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-27667684

RESUMO

Comparative analyses have identified genomic regions potentially involved in human evolution but do not directly assess function. Human accelerated regions (HARs) represent conserved genomic loci with elevated divergence in humans. If some HARs regulate human-specific social and behavioral traits, then mutations would likely impact cognitive and social disorders. Strikingly, rare biallelic point mutations-identified by whole-genome and targeted "HAR-ome" sequencing-showed a significant excess in individuals with ASD whose parents share common ancestry compared to familial controls, suggesting a contribution in 5% of consanguineous ASD cases. Using chromatin interaction sequencing, massively parallel reporter assays (MPRA), and transgenic mice, we identified disease-linked, biallelic HAR mutations in active enhancers for CUX1, PTBP2, GPC4, CDKL5, and other genes implicated in neural function, ASD, or both. Our data provide genetic evidence that specific HARs are essential for normal development, consistent with suggestions that their evolutionary changes may have altered social and/or cognitive behavior. PAPERCLIP.


Assuntos
Transtorno do Espectro Autista/genética , Cognição , Predisposição Genética para Doença , Neurogênese/genética , Mutação Puntual , Comportamento Social , Alelos , Animais , Córtex Cerebral/metabolismo , Dosagem de Genes , Variação Genética , Genoma Humano , Proteínas de Homeodomínio/genética , Humanos , Íntrons , Camundongos , Camundongos Transgênicos , Proteínas Nucleares/genética , Locos de Características Quantitativas , Elementos Reguladores de Transcrição , Proteínas Repressoras/genética , Fatores de Transcrição
2.
Genet Med ; 23(6): 1158-1162, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33531666

RESUMO

PURPOSE: The endoplasmic reticulum membrane complex (EMC) is a highly conserved, multifunctional 10-protein complex related to membrane protein biology. In seven families, we identified 13 individuals with highly overlapping phenotypes who harbor a single identical homozygous frameshift variant in EMC10. METHODS: Using exome, genome, and Sanger sequencing, a recurrent frameshift EMC10 variant was identified in affected individuals in an international cohort of consanguineous families. Multiple families were independently identified and connected via Matchmaker Exchange and internal databases. We assessed the effect of the frameshift variant on EMC10 RNA and protein expression and evaluated EMC10 expression in normal human brain tissue using immunohistochemistry. RESULTS: A homozygous variant EMC10 c.287delG (Refseq NM_206538.3, p.Gly96Alafs*9) segregated with affected individuals in each family, who exhibited a phenotypic spectrum of intellectual disability (ID) and global developmental delay (GDD), variable seizures and variable dysmorphic features (elongated face, curly hair, cubitus valgus, and arachnodactyly). The variant arose on two founder haplotypes and results in significantly reduced EMC10 RNA expression and an unstable truncated EMC10 protein. CONCLUSION: We propose that a homozygous loss-of-function variant in EMC10 causes a novel syndromic neurodevelopmental phenotype. Remarkably, the recurrent variant is likely the result of a hypermutable site and arose on distinct founder haplotypes.


Assuntos
Deficiências do Desenvolvimento , Deficiência Intelectual , Criança , Deficiências do Desenvolvimento/genética , Mutação da Fase de Leitura , Homozigoto , Humanos , Deficiência Intelectual/genética , Proteínas de Membrana/genética , Linhagem , Fenótipo , Convulsões/genética
3.
Proc Natl Acad Sci U S A ; 113(38): E5598-607, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27601654

RESUMO

Mutations that cause neurological phenotypes are highly informative with regard to mechanisms governing human brain function and disease. We report autosomal recessive mutations in the enzyme glutamate pyruvate transaminase 2 (GPT2) in large kindreds initially ascertained for intellectual and developmental disability (IDD). GPT2 [also known as alanine transaminase 2 (ALT2)] is one of two related transaminases that catalyze the reversible addition of an amino group from glutamate to pyruvate, yielding alanine and α-ketoglutarate. In addition to IDD, all affected individuals show postnatal microcephaly and ∼80% of those followed over time show progressive motor symptoms, a spastic paraplegia. Homozygous nonsense p.Arg404* and missense p.Pro272Leu mutations are shown biochemically to be loss of function. The GPT2 gene demonstrates increasing expression in brain in the early postnatal period, and GPT2 protein localizes to mitochondria. Akin to the human phenotype, Gpt2-null mice exhibit reduced brain growth. Through metabolomics and direct isotope tracing experiments, we find a number of metabolic abnormalities associated with loss of Gpt2. These include defects in amino acid metabolism such as low alanine levels and elevated essential amino acids. Also, we find defects in anaplerosis, the metabolic process involved in replenishing TCA cycle intermediates. Finally, mutant brains demonstrate misregulated metabolites in pathways implicated in neuroprotective mechanisms previously associated with neurodegenerative disorders. Overall, our data reveal an important role for the GPT2 enzyme in mitochondrial metabolism with relevance to developmental as well as potentially to neurodegenerative mechanisms.


Assuntos
Encéfalo/crescimento & desenvolvimento , Mitocôndrias/enzimologia , Doenças do Sistema Nervoso/genética , Transaminases/genética , Sequência de Aminoácidos/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Ciclo do Ácido Cítrico/genética , Homozigoto , Humanos , Ácidos Cetoglutáricos/metabolismo , Camundongos , Mitocôndrias/patologia , Mutação de Sentido Incorreto , Doenças do Sistema Nervoso/patologia , Fenótipo , Ácido Pirúvico/metabolismo , Transaminases/metabolismo
4.
J Am Soc Nephrol ; 29(9): 2348-2361, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30143558

RESUMO

BACKGROUND: Congenital anomalies of the kidney and urinary tract (CAKUT) are the most prevalent cause of kidney disease in the first three decades of life. Previous gene panel studies showed monogenic causation in up to 12% of patients with CAKUT. METHODS: We applied whole-exome sequencing to analyze the genotypes of individuals from 232 families with CAKUT, evaluating for mutations in single genes known to cause human CAKUT and genes known to cause CAKUT in mice. In consanguineous or multiplex families, we additionally performed a search for novel monogenic causes of CAKUT. RESULTS: In 29 families (13%), we detected a causative mutation in a known gene for isolated or syndromic CAKUT that sufficiently explained the patient's CAKUT phenotype. In three families (1%), we detected a mutation in a gene reported to cause a phenocopy of CAKUT. In 15 of 155 families with isolated CAKUT, we detected deleterious mutations in syndromic CAKUT genes. Our additional search for novel monogenic causes of CAKUT in consanguineous and multiplex families revealed a potential single, novel monogenic CAKUT gene in 19 of 232 families (8%). CONCLUSIONS: We identified monogenic mutations in a known human CAKUT gene or CAKUT phenocopy gene as the cause of disease in 14% of the CAKUT families in this study. Whole-exome sequencing provides an etiologic diagnosis in a high fraction of patients with CAKUT and will provide a new basis for the mechanistic understanding of CAKUT.


Assuntos
Sequenciamento do Exoma/métodos , Predisposição Genética para Doença/epidemiologia , Linhagem , Anormalidades Urogenitais/genética , Refluxo Vesicoureteral/genética , Animais , Humanos , Incidência , Rim/anormalidades , Camundongos , Fenótipo , Prognóstico , Medição de Risco , Sensibilidade e Especificidade , Distribuição por Sexo , Sistema Urinário/anormalidades , Anormalidades Urogenitais/epidemiologia , Refluxo Vesicoureteral/epidemiologia
5.
Am J Hum Genet ; 96(5): 709-19, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25865492

RESUMO

Despite recent advances in understanding the genetic bases of microcephaly, a large number of cases of microcephaly remain unexplained, suggesting that many microcephaly syndromes and associated genes have yet to be identified. Here, we report mutations in PYCR2, which encodes an enzyme in the proline biosynthesis pathway, as the cause of a unique syndrome characterized by postnatal microcephaly, hypomyelination, and reduced cerebral white-matter volume. Linkage mapping and whole-exome sequencing identified homozygous mutations (c.355C>T [p.Arg119Cys] and c.751C>T [p.Arg251Cys]) in PYCR2 in the affected individuals of two consanguineous families. A lymphoblastoid cell line from one affected individual showed a strong reduction in the amount of PYCR2. When mutant cDNAs were transfected into HEK293FT cells, both variant proteins retained normal mitochondrial localization but had lower amounts than the wild-type protein, suggesting that the variant proteins were less stable. A PYCR2-deficient HEK293FT cell line generated by genome editing with the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system showed that PYCR2 loss of function led to decreased mitochondrial membrane potential and increased susceptibility to apoptosis under oxidative stress. Morpholino-based knockdown of a zebrafish PYCR2 ortholog, pycr1b, recapitulated the human microcephaly phenotype, which was rescued by wild-type human PYCR2 mRNA, but not by mutant mRNAs, further supporting the pathogenicity of the identified variants. Hypomyelination and the absence of lax, wrinkly skin distinguishes this condition from that caused by previously reported mutations in the gene encoding PYCR2's isozyme, PYCR1, suggesting a unique and indispensable role for PYCR2 in the human CNS during development.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Antiporters/deficiência , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Microcefalia/genética , Doenças Mitocondriais/genética , Transtornos Psicomotores/genética , Pirrolina Carboxilato Redutases/genética , Sistemas de Transporte de Aminoácidos Acídicos/genética , Antiporters/genética , Feminino , Genótipo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Homozigoto , Humanos , Masculino , Microcefalia/patologia , Doenças Mitocondriais/patologia , Mutação , Fenótipo , Transtornos Psicomotores/patologia , delta-1-Pirrolina-5-Carboxilato Redutase
6.
Am J Med Genet B Neuropsychiatr Genet ; 177(8): 736-745, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30421579

RESUMO

Protein homeostasis is tightly regulated by the ubiquitin proteasome pathway. Disruption of this pathway gives rise to a host of neurological disorders. Through whole exome sequencing (WES) in families with neurodevelopmental disorders, we identified mutations in PSMD12, a core component of the proteasome, underlying a neurodevelopmental disorder with intellectual disability (ID) and features of autism spectrum disorder (ASD). We performed WES on six affected siblings from a multiplex family with ID and autistic features, the affected father, and two unaffected mothers, and a trio from a simplex family with one affected child with ID and periventricular nodular heterotopia. We identified an inherited heterozygous nonsense mutation in PSMD12 (NM_002816: c.367C>T: p.R123X) in the multiplex family and a de novo nonsense mutation in the same gene (NM_002816: c.601C>T: p.R201X) in the simplex family. PSMD12 encodes a non-ATPase regulatory subunit of the 26S proteasome. We confirm the association of PSMD12 with ID, present the first cases of inherited PSMD12 mutation, and demonstrate the heterogeneity of phenotypes associated with PSMD12 mutations.


Assuntos
Deficiência Intelectual/genética , Complexo de Endopeptidases do Proteassoma/genética , Adolescente , Adulto , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Criança , Pré-Escolar , Família , Feminino , Predisposição Genética para Doença , Haploinsuficiência/genética , Humanos , Masculino , Mutação , Transtornos do Neurodesenvolvimento/genética , Linhagem , Complexo de Endopeptidases do Proteassoma/metabolismo , Irmãos , Sequenciamento do Exoma
7.
Hum Mol Genet ; 23(13): 3456-66, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24501276

RESUMO

Whereas many genes associated with intellectual disability (ID) encode synaptic proteins, transcriptional defects leading to ID are less well understood. We studied a large, consanguineous pedigree of Arab origin with seven members affected with ID and mild dysmorphic features. Homozygosity mapping and linkage analysis identified a candidate region on chromosome 17 with a maximum multipoint logarithm of odds score of 6.01. Targeted high-throughput sequencing of the exons in the candidate region identified a homozygous 4-bp deletion (c.169_172delCACT) in the METTL23 (methyltransferase like 23) gene, which is predicted to result in a frameshift and premature truncation (p.His57Valfs*11). Overexpressed METTL23 protein localized to both nucleus and cytoplasm, and physically interacted with GABPA (GA-binding protein transcription factor, alpha subunit). GABP, of which GABPA is a component, is known to regulate the expression of genes such as THPO (thrombopoietin) and ATP5B (ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide) and is implicated in a wide variety of important cellular functions. Overexpression of METTL23 resulted in increased transcriptional activity at the THPO promoter, whereas knockdown of METTL23 with siRNA resulted in decreased expression of ATP5B, thus revealing the importance of METTL23 as a regulator of GABPA function. The METTL23 mutation highlights a new transcriptional pathway underlying human intellectual function.


Assuntos
Metilases de Modificação do DNA/metabolismo , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Metilases de Modificação do DNA/genética , Feminino , Fator de Transcrição de Proteínas de Ligação GA/genética , Genótipo , Humanos , Imunoprecipitação , Masculino , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica , RNA Interferente Pequeno , Trombopoetina/genética , Trombopoetina/metabolismo , Técnicas do Sistema de Duplo-Híbrido
8.
Am J Hum Genet ; 87(6): 882-9, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21109224

RESUMO

The tight junction, or zonula occludens, is a specialized cell-cell junction that regulates epithelial and endothelial permeability, and it is an essential component of the blood-brain barrier in the cerebrovascular endothelium. In addition to functioning as a diffusion barrier, tight junctions are also involved in signal transduction. In this study, we identified a homozygous mutation in the tight-junction protein gene JAM3 in a large consanguineous family from the United Arab Emirates. Some members of this family had a rare autosomal-recessive syndrome characterized by severe hemorrhagic destruction of the brain, subependymal calcification, and congenital cataracts. Their clinical presentation overlaps with some reported cases of pseudo-TORCH syndrome as well as with cases involving mutations in occludin, another component of the tight-junction complex. However, massive intracranial hemorrhage distinguishes these patients from others. Homozygosity mapping identified the disease locus in this family on chromosome 11q25 with a maximum multipoint LOD score of 6.15. Sequence analysis of genes in the candidate interval uncovered a mutation in the canonical splice-donor site of intron 5 of JAM3. RT-PCR analysis of a patient lymphoblast cell line confirmed abnormal splicing, leading to a frameshift mutation with early termination. JAM3 is known to be present in vascular endothelium, although its roles in cerebral vasculature have not been implicated. Our results suggest that JAM3 is essential for maintaining the integrity of the cerebrovascular endothelium as well as for normal lens development in humans.


Assuntos
Calcinose/genética , Catarata/congênito , Moléculas de Adesão Celular/genética , Hemorragia Cerebral/genética , Epêndima/patologia , Homozigoto , Mutação , Junções Íntimas/metabolismo , Catarata/genética , Criança , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem
9.
JAMA Neurol ; 80(9): 980-988, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486637

RESUMO

Importance: Polymicrogyria is the most commonly diagnosed cortical malformation and is associated with neurodevelopmental sequelae including epilepsy, motor abnormalities, and cognitive deficits. Polymicrogyria frequently co-occurs with other brain malformations or as part of syndromic diseases. Past studies of polymicrogyria have defined heterogeneous genetic and nongenetic causes but have explained only a small fraction of cases. Objective: To survey germline genetic causes of polymicrogyria in a large cohort and to consider novel polymicrogyria gene associations. Design, Setting, and Participants: This genetic association study analyzed panel sequencing and exome sequencing of accrued DNA samples from a retrospective cohort of families with members with polymicrogyria. Samples were accrued over more than 20 years (1994 to 2020), and sequencing occurred in 2 stages: panel sequencing (June 2015 to January 2016) and whole-exome sequencing (September 2019 to March 2020). Individuals seen at multiple clinical sites for neurological complaints found to have polymicrogyria on neuroimaging, then referred to the research team by evaluating clinicians, were included in the study. Targeted next-generation sequencing and/or exome sequencing were performed on probands (and available parents and siblings) from 284 families with individuals who had isolated polymicrogyria or polymicrogyria as part of a clinical syndrome and no genetic diagnosis at time of referral from clinic, with sequencing from 275 families passing quality control. Main Outcomes and Measures: The number of families in whom genetic sequencing yielded a molecular diagnosis that explained the polymicrogyria in the family. Secondarily, the relative frequency of different genetic causes of polymicrogyria and whether specific genetic causes were associated with co-occurring head size changes were also analyzed. Results: In 32.7% (90 of 275) of polymicrogyria-affected families, genetic variants were identified that provided satisfactory molecular explanations. Known genes most frequently implicated by polymicrogyria-associated variants in this cohort were PIK3R2, TUBB2B, COL4A1, and SCN3A. Six candidate novel polymicrogyria genes were identified or confirmed: de novo missense variants in PANX1, QRICH1, and SCN2A and compound heterozygous variants in TMEM161B, KIF26A, and MAN2C1, each with consistent genotype-phenotype relationships in multiple families. Conclusions and Relevance: This study's findings reveal a higher than previously recognized rate of identifiable genetic causes, specifically of channelopathies, in individuals with polymicrogyria and support the utility of exome sequencing for families affected with polymicrogyria.


Assuntos
Polimicrogiria , Humanos , Polimicrogiria/diagnóstico por imagem , Polimicrogiria/genética , Sequenciamento do Exoma , Estudos Retrospectivos , Mutação de Sentido Incorreto , Irmãos , Proteínas do Tecido Nervoso/genética , Conexinas/genética
10.
Eur Urol Open Sci ; 44: 106-112, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36185583

RESUMO

Background: Congenital anomalies of the kidneys and urinary tract (CAKUT) are the most common cause of chronic kidney disease among children and adults younger than 30 yr. In our previous study, whole-exome sequencing (WES) identified a known monogenic cause of isolated or syndromic CAKUT in 13% of families with CAKUT. However, WES has limitations and detection of copy number variations (CNV) is technically challenging, and CNVs causative of CAKUT have previously been detected in up to 16% of cases. Objective: To detect CNVs causing CAKUT in this WES cohort and increase the diagnostic yield. Design setting and participants: We performed a genome-wide single nucleotide polymorphism (SNP)-based CNV analysis on the same CAKUT cohort for whom WES was previously conducted. Outcome measurements and statistical analysis: We evaluated and classified the CNVs using previously published predefined criteria. Results and limitations: In a cohort of 170 CAKUT families, we detected a pathogenic CNV known to cause CAKUT in nine families (5.29%, 9/170). There were no competing variants on genome-wide CNV analysis or WES analysis. In addition, we identified novel likely pathogenic CNVs that may cause a CAKUT phenotype in three of the 170 families (1.76%). Conclusions: CNV analysis in this cohort of 170 CAKUT families previously examined via WES increased the rate of diagnosis of genetic causes of CAKUT from 13% on WES to 18% on WES + CNV analysis combined. We also identified three candidate loci that may potentially cause CAKUT. Patient summary: We conducted a genetics study on families with congenital anomalies of the kidney and urinary tract (CAKUT). We identified gene mutations that can explain CAKUT symptoms in 5.29% of the families, which increased the percentage of genetic causes of CAKUT to 18% from a previous study, so roughly one in five of our patients with CAKUT had a genetic cause. These analyses can help patients with CAKUT and their families in identifying a possible genetic cause.

11.
Ann Neurol ; 67(4): 516-25, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20437587

RESUMO

OBJECTIVE: We sought to explore the genetic and molecular causes of Troyer syndrome, one of several complicated hereditary spastic paraplegias (HSPs). Troyer syndrome had been thought to be restricted to the Amish; however, we identified 2 Omani families with HSP, short stature, dysarthria and developmental delay-core features of Troyer syndrome-and a novel mutation in the SPG20 gene, which is also mutated in the Amish. In addition, we analyzed SPG20 expression throughout development to infer how disruption of this gene might generate the constellation of developmental and degenerative Troyer syndrome phenotypes. METHODS: Clinical characterization of 2 non-Amish families with Troyer syndrome was followed by linkage and sequencing analysis. Quantitative polymerase chain reaction and in situ hybridization analysis of SPG20 expression were carried out in embryonic and adult human and mouse tissue. RESULTS: Two Omani families carrying a novel SPG20 mutation displayed clinical features remarkably similar to the Amish patients with Troyer syndrome. SPG20 mRNA is expressed broadly but at low relative levels in the adult brain; however, it is robustly and specifically expressed in the limbs, face, and brain during early morphogenesis. INTERPRETATION: Null mutations in SPG20 cause Troyer syndrome, a specific clinical entity with developmental and degenerative features. Maximal expression of SPG20 in the limb buds and forebrain during embryogenesis may explain the developmental origin of the skeletal and cognitive defects observed in this disorder.


Assuntos
Predisposição Genética para Doença/genética , Doenças Neurodegenerativas/etiologia , Paraplegia/complicações , Paraplegia/genética , Polimorfismo de Nucleotídeo Único/genética , Proteínas/genética , Adolescente , Adulto , Proteínas de Ciclo Celular , Pré-Escolar , Mapeamento Cromossômico , Análise Mutacional de DNA/métodos , Saúde da Família , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Omã , Paraplegia/patologia , Proteínas/metabolismo , RNA Mensageiro/genética , Adulto Jovem
12.
Am J Med Genet A ; 155A(11): 2647-53, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21964978

RESUMO

Hypogonadism, alopecia, diabetes mellitus, mental retardation, and extrapyramidal syndrome [also known as Woodhouse-Sakati syndrome (WSS)] is a rare autosomal recessive neuroendocrine and ectodermal disorder. The syndrome was first described by Woodhouse and Sakati in 1983, and 47 patients from 23 families have been reported so far. We report on an additional seven patients (four males and three females) from two highly consanguineous Arab families from Qatar, presenting with a milder phenotype of WSS. These patients show the spectrum of clinical features previously found in WSS, but lack evidence of diabetes mellitus and extrapyramidal symptoms. These two new families further illustrate the natural course and the interfamilial phenotypic variability of WSS that may lead to challenges in making the diagnosis. In addition, our study suggests that WSS may not be as infrequent in the Arab world as previously thought.


Assuntos
Alopecia/genética , Arritmias Cardíacas/genética , Diabetes Mellitus/genética , Hipogonadismo/genética , Deficiência Intelectual/genética , Proteínas Nucleares/genética , Adolescente , Adulto , Alopecia/diagnóstico , Arritmias Cardíacas/diagnóstico , Doenças dos Gânglios da Base , Criança , Cromossomos Humanos Par 2/genética , Consanguinidade , Diabetes Mellitus/diagnóstico , Feminino , Heterogeneidade Genética , Testes Genéticos , Humanos , Hipogonadismo/diagnóstico , Deficiência Intelectual/diagnóstico , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Catar , Doenças Raras , Complexos Ubiquitina-Proteína Ligase , Adulto Jovem
13.
Eur J Hum Genet ; 29(11): 1663-1668, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34413497

RESUMO

Heterozygous missense variants in the WD repeat domain 11 (WDR11) gene are associated with hypogonadotropic hypogonadism in humans. In contrast, knockout of both alleles of Wdr11 in mice results in a more severe phenotype with growth and developmental delay, features of holoprosencephaly, heart defects and reproductive disorders. Similar developmental defects known to be associated with aberrant hedgehog signaling and ciliogenesis have been found in zebrafish after Wdr11 knockdown. We here report biallelic loss-of-function variants in the WDR11 gene in six patients from three independent families with intellectual disability, microcephaly and short stature. The findings suggest that biallelic WDR11 variants in humans result in an overlapping but milder phenotype compared to Wdr11-deficient animals. However, the observed human phenotype differs significantly from dominantly inherited variants leading to hypogonadotropic hypogonadism, suggesting that recessive WDR11 variants result in a clinically distinct entity.


Assuntos
Deficiências do Desenvolvimento/genética , Deficiência Intelectual/genética , Mutação com Perda de Função , Proteínas de Membrana/genética , Microcefalia/genética , Fenótipo , Proteínas Proto-Oncogênicas/genética , Adulto , Criança , Deficiências do Desenvolvimento/patologia , Feminino , Humanos , Deficiência Intelectual/patologia , Masculino , Microcefalia/patologia , Mutação de Sentido Incorreto , Linhagem
14.
Kidney Int Rep ; 6(2): 472-483, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33615072

RESUMO

INTRODUCTION: Most of the approximately 60 genes that if mutated cause steroid-resistant nephrotic syndrome (SRNS) are highly expressed in the glomerular podocyte, rendering SRNS a "podocytopathy." METHODS: We performed whole-exome sequencing (WES) in 1200 nephrotic syndrome (NS) patients. RESULTS: We discovered homozygous truncating and homozygous missense mutation in SYNPO2 (synaptopodin-2) (p.Lys1124∗ and p.Ala1134Thr) in 2 patients with childhood-onset NS. We found SYNPO2 expression in both podocytes and mesangial cells; however, notably, immunofluorescence staining of adult human and rat kidney cryosections indicated that SYNPO2 is localized mainly in mesangial cells. Subcellular localization studies reveal that in these cells SYNPO2 partially co-localizes with α-actinin and filamin A-containing F-actin filaments. Upon transfection in mesangial cells or podocytes, EGFP-SYNPO2 co-localized with α-actinin-4, which gene is mutated in autosomal dominant SRNS in humans. SYNPO2 overexpression increases mesangial cell migration rate (MMR), whereas shRNA knockdown reduces MMR. Decreased MMR was rescued by transfection of wild-type mouse Synpo2 cDNA but only partially by cDNA representing mutations from the NS patients. The increased mesangial cell migration rate (MMR) by SYNPO2 overexpression was inhibited by ARP complex inhibitor CK666. SYNPO2 shRNA knockdown in podocytes decreased active Rac1, which was rescued by transfection of wild-type SYNPO2 cDNA but not by cDNA representing any of the 2 mutant variants. CONCLUSION: We show that SYNPO2 variants may lead to Rac1-ARP3 dysregulation, and may play a role in the pathogenesis of nephrotic syndrome.

16.
Eur J Med Genet ; 60(5): 245-249, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28254648

RESUMO

Arthrogryposis multiplex congenital, the occurrence of multiple joint contractures at birth, can in some cases be accompanied by insufficient myelination of peripheral nerves, muscular hypotonia, reduced tendon reflexes, and respiratory insufficiency. Recently mutations in the CASPR/CNTN1 complex have been associated with similar severe phenotypes and CNTNAP1 gene mutations, causing loss of the CASPR protein, were shown to cause severe, prenatal onset arthrogryposis multiplex congenita in four unrelated families. Here we report a consanguineous Arab family from Qatar with three children having an early lethal form of arthrogryposis multiplex congenita and a novel frameshift mutation in CNTNAP1. We further expand the existing CNTNAP1-associated phenotype to include profound cerebral and cerebellar atrophy.


Assuntos
Artrogripose/genética , Encéfalo/patologia , Moléculas de Adesão Celular Neuronais/genética , Mutação da Fase de Leitura , Consanguinidade , Feminino , Humanos , Recém-Nascido , Masculino , Linhagem
17.
Neuron ; 84(6): 1240-57, 2014 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-25521379

RESUMO

Katanin is a microtubule-severing complex whose catalytic activities are well characterized, but whose in vivo functions are incompletely understood. Human mutations in KATNB1, which encodes the noncatalytic regulatory p80 subunit of katanin, cause severe microlissencephaly. Loss of Katnb1 in mice confirms essential roles in neurogenesis and cell survival, while loss of zebrafish katnb1 reveals specific roles for katnin p80 in early and late developmental stages. Surprisingly, Katnb1 null mutant mouse embryos display hallmarks of aberrant Sonic hedgehog signaling, including holoprosencephaly. KATNB1-deficient human cells show defective proliferation and spindle structure, while Katnb1 null fibroblasts also demonstrate a remarkable excess of centrioles, with supernumerary cilia but deficient Hedgehog signaling. Our results reveal unexpected functions for KATNB1 in regulating overall centriole, mother centriole, and cilia number, and as an essential gene for normal Hedgehog signaling during neocortical development.


Assuntos
Adenosina Trifosfatases/fisiologia , Centríolos/fisiologia , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Cílios/fisiologia , Adenosina Trifosfatases/genética , Animais , Estudos de Casos e Controles , Proliferação de Células/genética , Proliferação de Células/fisiologia , Centríolos/genética , Córtex Cerebral/anormalidades , Córtex Cerebral/metabolismo , Cílios/genética , Embrião de Mamíferos , Desenvolvimento Embrionário/genética , Fibroblastos/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Katanina , Camundongos , Microcefalia/genética , Mutação , Linhagem , Splicing de RNA/genética , População Branca/genética , Peixe-Zebra
18.
Neurology ; 81(16): 1378-86, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24078737

RESUMO

OBJECTIVE: To identify the genetic cause of a syndrome causing cerebellar ataxia and eye movement abnormalities. METHODS: We identified 2 families with cerebellar ataxia, eye movement abnormalities, and global developmental delay. We performed genetic analyses including single nucleotide polymorphism genotyping, linkage analysis, array comparative genomic hybridization, quantitative PCR, and Sanger sequencing. We obtained eye movement recordings of mutant mice deficient for the ortholog of the identified candidate gene, and performed immunohistochemistry using human and mouse brain specimens. RESULTS: All affected individuals had ataxia, eye movement abnormalities, most notably tonic upgaze, and delayed speech and cognitive development. Homozygosity mapping identified the disease locus on chromosome 4q. Within this region, a homozygous deletion of GRID2 exon 4 in the index family and compound heterozygous deletions involving GRID2 exon 2 in the second family were identified. Grid2-deficient mice showed larger spontaneous and random eye movements compared to wild-type mice. In developing mouse and human cerebella, GRID2 localized to the Purkinje cell dendritic spines. Brain MRI in 2 affected children showed progressive cerebellar atrophy, which was more severe than that of Grid2-deficient mice. CONCLUSIONS: Biallelic deletions of GRID2 lead to a syndrome of cerebellar ataxia and tonic upgaze in humans. The phenotypic resemblance and similarity in protein expression pattern between humans and mice suggest a conserved role for GRID2 in the synapse organization between parallel fibers and Purkinje cells. However, the progressive and severe cerebellar atrophy seen in the affected individuals could indicate an evolutionarily unique role for GRID2 in the human cerebellum.


Assuntos
Ataxia Cerebelar/genética , Transtornos da Motilidade Ocular/genética , Receptores de Glutamato/genética , Adolescente , Animais , Criança , Pré-Escolar , Éxons/genética , Feminino , Genes Recessivos/genética , Humanos , Masculino , Camundongos , Deleção de Sequência/genética , Síndrome
19.
Neuron ; 77(2): 259-73, 2013 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-23352163

RESUMO

Despite significant heritability of autism spectrum disorders (ASDs), their extreme genetic heterogeneity has proven challenging for gene discovery. Studies of primarily simplex families have implicated de novo copy number changes and point mutations, but are not optimally designed to identify inherited risk alleles. We apply whole-exome sequencing (WES) to ASD families enriched for inherited causes due to consanguinity and find familial ASD associated with biallelic mutations in disease genes (AMT, PEX7, SYNE1, VPS13B, PAH, and POMGNT1). At least some of these genes show biallelic mutations in nonconsanguineous families as well. These mutations are often only partially disabling or present atypically, with patients lacking diagnostic features of the Mendelian disorders with which these genes are classically associated. Our study shows the utility of WES for identifying specific genetic conditions not clinically suspected and the importance of partial loss of gene function in ASDs.


Assuntos
Transtorno Autístico/diagnóstico , Transtorno Autístico/genética , Exoma/genética , Estudo de Associação Genômica Ampla/métodos , Adolescente , Animais , Células Cultivadas , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Humanos , Masculino , Linhagem , Ratos , Análise de Sequência de DNA/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa