Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39062846

RESUMO

Hyaluronan (HA) has gained significant attention in cancer research for its role in modulating chemoresistance. This review aims to elucidate the mechanisms by which HA contributes to chemoresistance, focusing on its interactions within the tumor microenvironment. HA is abundantly present in the extracellular matrix (ECM) and binds to cell-surface receptors such as CD44 and RHAMM. These interactions activate various signaling pathways, including PI3K/Akt, MAPK, and NF-κB, which are implicated in cell survival, proliferation, and drug resistance. HA also influences the physical properties of the tumor stroma, enhancing its density and reducing drug penetration. Additionally, HA-mediated signaling contributes to the epithelial-mesenchymal transition (EMT), a process associated with increased metastatic potential and resistance to apoptosis. Emerging therapeutic strategies aim to counteract HA-induced chemoresistance by targeting HA synthesis, degradation, metabolism, or its binding to CD44. This review underscores the complexity of HA's role in chemoresistance and highlights the potential for HA-targeted therapies to improve the efficacy of conventional chemotherapeutics.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal , Matriz Extracelular , Ácido Hialurônico , Neoplasias , Transdução de Sinais , Microambiente Tumoral , Humanos , Ácido Hialurônico/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Transdução de Sinais/efeitos dos fármacos , Matriz Extracelular/metabolismo , Receptores de Hialuronatos/metabolismo , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Animais
2.
Eur J Clin Invest ; 53(3): e13899, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36346481

RESUMO

BACKGROUND: Dysregulated hyaluronic acid (HA) metabolism has been shown to be implicated in several pathologies including endometriosis. 4-Methylumbelliferone (4MU) is an HA synthesis inhibitor with proven antitumour activity. In this study, we aim to evaluate the effect of 4MU on endometriosis development both in vivo and in vitro. METHODS: Endometriosis was surgically induced by uterine tissue auto-transplantation in 32 two-month-old BALB/c mice. Animals were designated into the early or late starting treatment group, which initiated on day 2 or day 15 after surgery, respectively. Within each group, 4MU 200 mg/kg/day or vehicle (Control) were administered by oesophageal gavage for 28 days. After sacrifice, the percentage of developed lesions, lesion size, cell proliferation, vascularization and HA deposition within the endometriotic-like lesions were evaluated. Cell viability was assessed in endometrial epithelial cells (ECC-1) and in endometrial stromal cells (t-HESC); and migration was evaluated in t-HESC. RESULTS: There was a significant reduction in the percentage of developed lesions in mice that started the 4MU treatment on day 2 compared with its respective control group, and compared with those that started treatment on day 15. However, no significant changes were found when analysing endometriotic-like lesion's cell proliferation, vascularization and HA deposition. In vitro, both cell viability and migration were inhibited by 4MU treatment. CONCLUSIONS: The inhibition of HA synthesis could be a beneficial and alternative option to treat endometriosis at the early stage of the disease. Further research is necessary to elucidate 4MU's mechanism of action and better strategies for delivering this promising drug.


Assuntos
Endometriose , Humanos , Feminino , Camundongos , Animais , Endometriose/tratamento farmacológico , Endometriose/metabolismo , Endometriose/patologia , Ácido Hialurônico/farmacologia , Ácido Hialurônico/uso terapêutico , Útero/metabolismo , Útero/patologia , Neovascularização Patológica , Células Epiteliais/metabolismo , Proliferação de Células
3.
IUBMB Life ; 74(10): 927-942, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35218610

RESUMO

Hyaluronan (HA) is a component of the extracellular matrix (ECM) it is the main non-sulfated glycosaminoglycan able to modulate cell behavior in the healthy and tumor context. Sulfated hyaluronan (sHA) is a biomaterial derived from chemical modifications of HA, since this molecule is not naturally sulfated. The HA sulfation modifies several properties of the native molecule, acquiring antitumor properties in different cancers. In this study, we evaluated the action of sHA of ~30-60 kDa with different degrees of sulfation (0.7 sHA1 and 2.5 sHA3) on tumor cells of a breast, lung, and colorectal cancer model and its action on other cells of the tumor microenvironment, such as endothelial and monocytes/macrophage cells. Our data showed that in breast and lung tumor cells, sHA3 is able to modulate cell viability, cytotoxicity, and proliferation, but no effects were observed on colorectal cancer cells. In 3D cultures of breast and lung cancer cells, sHA3 diminished the size of the tumorsphere and modulated total HA levels. In these tumor models, treatment of monocytes/macrophages with sHA3 showed a downregulation of the expression of angiogenic factors. We also observed a decrease in endothelial cell migration and modulation of the hyaluronan-binding protein TSG-6. In the breast in vivo xenograft model, monocytes/macrophages preincubated with sHA1 or sHA3 decreased tumor vasculature, TSG-6 and HA levels. Besides, in silico analysis showed an association of TSG-6, HAS2, and IL-8 with biological processes implicated in the progression of the tumor. Taken together, our data indicate that sHA in a breast and lung tumor context is able to induce an antiangiogenic action on tumor cells as well as in monocytes/macrophages (Mo/MØ) by modulation of endothelial migration, angiogenic factors, and vessel formation.


Assuntos
Neoplasias Colorretais , Neoplasias Pulmonares , Materiais Biocompatíveis , Neoplasias Colorretais/tratamento farmacológico , Humanos , Receptores de Hialuronatos , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Interleucina-8 , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Macrófagos , Monócitos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Sulfatos/química , Sulfatos/farmacologia , Microambiente Tumoral
4.
Tumour Biol ; 44(1): 85-105, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35811548

RESUMO

INTRODUCTION: Prolactinomas are the most frequent pituitary tumor subtype. Despite most of them respond to medical treatment, a proportion are resistant and become a challenge in clinical management. Wnt/ß-Catenin pathway has been implicated in several cancers including pituitary tumors and other sellar region malignancies. Interestingly, Wnt/ß-Catenin inhibition augments the cytotoxicity of the chemotherapeutic agent Temozolomide (TMZ) in different cancers. TMZ is now being implemented as rescue therapy for aggressive pituitary adenoma treatment. However, the molecular mechanisms associated with TMZ action in pituitary tumors remain unclear. OBJECTIVES: Our aims in the present study were to evaluate differential ß-Catenin expression in human resistant prolactinomas and Wnt/ß-Catenin signaling activation and involvement in Prolactin (PRL) secreting experimental models treated with TMZ. RESULTS: We first evaluated by immunohistochemistry ß-Catenin localization in human resistant prolactinomas in which we demonstrated reduced membrane ß-Catenin in prolactinoma cells compared to normal pituitaries, independently of the Ki-67 proliferation indexes. In turn, in vivo 15 mg/kg of orally administered TMZ markedly reduced PRL production and increased prolactinoma cell apoptosis in mice bearing xenografted prolactinomas. Intratumoral ß-Catenin strongly correlated with Prl and Cyclin D1, and importantly, TMZ downregulated both ß-Catenin and Cyclin D1, supporting their significance in prolactinoma growth and as candidates of therapeutic targets. When tested in vitro, TMZ directly reduced MMQ cell viability, increased apoptosis and produced G2/M cell cycle arrest. Remarkably, ß-Catenin activation and VEGF secretion were inhibited by TMZ in vitro. CONCLUSIONS: We concluded that dopamine resistant prolactinomas undergo a ß-Catenin relocalization in relation to normal pituitaries and that TMZ restrains experimental prolactinoma tumorigenicity by reducing PRL production and ß-Catenin activation. Together, our findings contribute to the understanding of Wnt/ß-Catenin implication in prolactinoma maintenance and TMZ therapy, opening the opportunity of new treatment strategies for aggressive and resistant pituitary tumors.


Assuntos
Neoplasias Hipofisárias , Prolactinoma , Animais , Ciclina D1 , Humanos , Camundongos , Modelos Teóricos , Neoplasias Hipofisárias/patologia , Prolactina/metabolismo , Prolactina/uso terapêutico , Prolactinoma/tratamento farmacológico , Prolactinoma/metabolismo , Prolactinoma/patologia , Temozolomida/farmacologia , Temozolomida/uso terapêutico , beta Catenina
5.
J Biol Chem ; 295(11): 3485-3496, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-31932306

RESUMO

Hyaluronan (HA) is one of the most prevalent glycosaminoglycans of the vascular extracellular matrix (ECM). Abnormal HA accumulation within blood vessel walls is associated with tissue inflammation and is prominent in most vascular pathological conditions such as atherosclerosis and restenosis. Hyaluronan synthase 2 (HAS2) is the main hyaluronan synthase enzyme involved in HA synthesis and uses cytosolic UDP-glucuronic acid and UDP-GlcNAc as substrates. The synthesis of UDP-glucuronic acid can alter the NAD+/NADH ratio via the enzyme UDP-glucose dehydrogenase, which oxidizes the alcohol group at C6 to the COO- group. Here, we show that HAS2 expression can be modulated by sirtuin 1 (SIRT1), the master metabolic sensor of the cell, belonging to the class of NAD+-dependent deacetylases. Our results revealed the following. 1) Treatments of human aortic smooth muscle cells (AoSMCs) with SIRT1 activators (SRT1720 and resveratrol) inhibit both HAS2 expression and accumulation of pericellular HA coats. 2) Tumor necrosis factor α (TNFα) induced HA-mediated monocyte adhesion and AoSMC migration, whereas SIRT1 activation prevented immune cell recruitment and cell motility by reducing the expression levels of the receptor for HA-mediated motility, RHAMM, and the HA-binding protein TNF-stimulated gene 6 protein (TSG6). 3) SIRT1 activation prevented nuclear translocation of NF-κB (p65), which, in turn, reduced the levels of HAS2-AS1, a long-noncoding RNA that epigenetically controls HAS2 mRNA expression. In conclusion, we demonstrate that both HAS2 expression and HA accumulation by AoSMCs are down-regulated by the metabolic sensor SIRT1.


Assuntos
Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Hialuronan Sintases/genética , NF-kappa B/metabolismo , RNA Longo não Codificante/genética , Sirtuína 1/metabolismo , Aorta/citologia , Núcleo Celular/efeitos dos fármacos , Células Cultivadas , Citoproteção/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Hialuronan Sintases/metabolismo , Ácido Hialurônico/metabolismo , Inflamação/patologia , Modelos Biológicos , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Transporte Proteico/efeitos dos fármacos , Resveratrol/farmacologia , Fator de Necrose Tumoral alfa
6.
Apoptosis ; 26(7-8): 447-459, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34024019

RESUMO

Osteosarcoma (OS) is the most frequent malignant bone tumor, affecting predominantly children. Metastases represent a major clinical challenge and an estimated 80% would present undetectable micrometastases at diagnosis. The identification of metastatic traits and molecules would impact in micrometastasis management. We demonstrated that OS LM7 metastatic cells secretome was able to induce microvascular endothelium cell rearrangements, an angiogenic-related trait. A proteomic analysis indicated a gain in angiogenic-related pathways in these cells, as compared to their parental-non-metastatic OS SAOS2 cells counterpart. Further, factors with proangiogenic functions like VEGF and PDGF were upregulated in LM7 cells. However, no differential angiogenic response was induced by LM7 cells in vivo. Regulation of the Fas-FasL axis is key for OS cells to colonize the lungs in this model. Analysis of the proteomic data with emphasis in apoptosis pathways and related processes revealed that the percentage of genes associated with those, presented similar levels in SAOS2 and LM7 cells. Further, the balance of expression levels of proteins with pro- and antiapoptotic functions in both cell types was subtle. Interestingly and of relevance to the model, Fas associated Factor 1 (FAF1), which participates in Fas signaling, was present in LM7 cells and was not detected in SAOS2 cells. The subtle differences in apoptosis-related events and molecules, together with the reported cell-survival functions of the identified angiogenic factors and the increased survival features that we observed in LM7 cells, suggest that the gain in angiogenesis-related pathways in metastatic OS cells would relate to a prosurvival switch rather to an angiogenic switch as an advantage feature to colonize the lungs. OS metastatic cells also displayed higher adhesion towards microvascular endothelium cells suggesting an advantage for tissue colonization. A gain in angiogenesis pathways and molecules does not result in major angiogenic potential. Together, our results suggest that metastatic OS cells would elicit signaling associated to a prosurvival phenotype, allowing homing into the hostile site for metastasis. During the gain of metastatic traits process, cell populations displaying higher adhesive ability to microvascular endothelium, negative regulation of the Fas-FasL axis in the lung parenchyma and a prosurvival switch, would be selected. This opens a new scenario where antiangiogenic treatments would affect cell survival rather than angiogenesis, and provides a molecular panel of expression that may help in distinguishing OS cells with different metastatic potential.


Assuntos
Neoplasias Ósseas , Neoplasias Pulmonares , Osteossarcoma , Proteínas Adaptadoras de Transdução de Sinal , Apoptose , Proteínas Reguladoras de Apoptose , Neoplasias Ósseas/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Humanos , Neoplasias Pulmonares/genética , Osteossarcoma/genética , Proteômica , Secretoma , Regulação para Cima
7.
Int J Mol Sci ; 22(10)2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064584

RESUMO

Liver fibrosis results from many chronic injuries and may often progress to cirrhosis and hepatocellular carcinoma (HCC). In fact, up to 90% of HCC arise in a cirrhotic liver. Conversely, stress is implicated in liver damage, worsening disease outcome. Hence, stress could play a role in disrupting liver homeostasis, a concept that has not been fully explored. Here, in a murine model of TAA-induced liver fibrosis we identified nerve growth factor (NGF) to be a crucial regulator of the stress-induced fibrogenesis signaling pathway as it activates its receptor p75 neurotrophin receptor (p75NTR), increasing liver damage. Additionally, blocking the NGF decreased liver fibrosis whereas treatment with recombinant NGF accelerated the fibrotic process to a similar extent than stress challenge. We further show that the fibrogenesis induced by stress is characterized by specific changes in the hepatoglycocode (increased ß1,6GlcNAc-branched complex N-glycans and decreased core 1 O-glycans expression) which are also observed in patients with advanced fibrosis compared to patients with a low level of fibrosis. Our study facilitates an understanding of stress-induced liver injury and identify NGF signaling pathway in early stages of the disease, which contributes to the established fibrogenesis.


Assuntos
Regulação da Expressão Gênica , Cirrose Hepática/patologia , Fator de Crescimento Neural/metabolismo , Polissacarídeos/metabolismo , Receptores de Fator de Crescimento Neural/metabolismo , Estresse Fisiológico , Tioacetamida/toxicidade , Animais , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/genética , Cirrose Hepática/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Crescimento Neural/genética , Receptores de Fator de Crescimento Neural/genética
8.
Int J Mol Sci ; 22(11)2021 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-34070901

RESUMO

Glycosaminoglycans (GAGs) and proteoglycans (PGs) are major components of the glycocalyx. The secreted GAG and CD44 ligand hyaluronic acid (HA), and the cell surface PG syndecan-1 (Sdc-1) modulate the expression and activity of cytokines, chemokines, growth factors, and adhesion molecules, acting as critical regulators of tumor cell behavior. Here, we studied the effect of Sdc-1 siRNA depletion and HA treatment on hallmark processes of cancer in breast cancer cell lines of different levels of aggressiveness. We analyzed HA synthesis, and parameters relevant to tumor progression, including the stem cell phenotype, Wnt signaling constituents, cell cycle progression and apoptosis, and angiogenic markers in luminal MCF-7 and triple-negative MDA-MB-231 cells. Sdc-1 knockdown enhanced HAS-2 synthesis and HA binding in MCF-7, but not in MDA-MB-231 cells. Sdc-1-depleted MDA-MB-231 cells showed a reduced CD24-/CD44+ population. Furthermore, Sdc-1 depletion was associated with survival signals in both cell lines, affecting cell cycle progression and apoptosis evasion. These changes were linked to the altered expression of KLF4, MSI2, and miR-10b and differential changes in Erk, Akt, and PTEN signaling. We conclude that Sdc-1 knockdown differentially affects HA metabolism in luminal and triple-negative breast cancer model cell lines and impacts the stem phenotype, cell survival, and angiogenic factors.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glicocálix/metabolismo , Ácido Hialurônico/metabolismo , Sindecana-1/genética , Neoplasias de Mama Triplo Negativas/genética , Via de Sinalização Wnt/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Antígeno CD24/genética , Antígeno CD24/metabolismo , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Bases de Dados Factuais , Feminino , Glicocálix/química , Glicocálix/efeitos dos fármacos , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Hialuronan Sintases/genética , Hialuronan Sintases/metabolismo , Ácido Hialurônico/farmacologia , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Células MCF-7 , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Análise de Sobrevida , Sindecana-1/antagonistas & inibidores , Sindecana-1/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia
9.
Liver Int ; 40(4): 977-987, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32011099

RESUMO

BACKGROUND AND AIMS: Liver fibrosis results from cycles of liver damage and scar formation. We herein aimed at analysing neural crest cells and/or bone marrow stromal cells contribution to the liver. METHODS: Two liver fibrosis and one hepatectomy model were applied on double-transgenic loxP-Cre mouse lines. RESULTS: Increased numbers of glia with more complex processes were found in fibrotic livers. During embryonic development, only few cells were traced in the liver and bone marrow, in a minor fraction of mice of different neural crest reporter strains analysed: therefore, a neural crest origin of such cells is doubtful. In the fibrotic liver, a significantly higher incidence of endothelial cells and hepatocyte-like cells expressing the reporter gene Tomato were found in Wnt1-Cre-Tom and GLAST-CreERT2-Tom mice. Consistently, during early fibrogenesis stromal Wnt1-traced cells, with progenitor (CFU-F) properties, get likely mobilized to peripheral blood. Circulating adult Wnt1-traced cells are stromal cells and lack from the expression of other bone marrow and endothelial progenitor cells markers. Furthermore, in a 70% hepatectomy model GLAST+ Wnt1-traced pericytes were found to be mobilized from the bone marrow and the incidence of GLAST-traced hepatocyte-like cells was increased. Finally, GLAST-traced hepatocyte like-cells were found to maintain the expression of stromal markers. CONCLUSIONS: Our data suggest a gliosis process during liver fibrogenesis. While neural crest cells probably do not contribute with other liver cell types than glia, GLAST+ Wnt1-traced bone marrow pericytes are likely a source of endothelial and hepatocyte-like cells after liver injury and do not contribute to scarring.


Assuntos
Crista Neural , Pericitos , Animais , Medula Óssea , Células Endoteliais , Fígado , Regeneração Hepática , Camundongos , Camundongos Transgênicos
10.
Adv Exp Med Biol ; 1245: 67-83, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32266653

RESUMO

The extracellular matrix is part of the microenvironment and its functions are associated with the physical and chemical properties of the tissue. Among the extracellular components, the glycosaminoglycan hyaluronan is a key component, defining both the physical and biochemical characteristics of the healthy matrices. The hyaluronan metabolism is strictly regulated in physiological conditions, but in the tumoral tissues, its expression, size and binding proteins interaction are dysregulated. Hyaluronan from the tumor microenvironment promotes tumor cell proliferation, invasion, immune evasion, stemness alterations as well as drug resistance. This chapter describes data regarding novel concepts of hyaluronan functions in the tumor. Additionally, we discuss potential clinical applications of targeting HA metabolism in cancer therapy.


Assuntos
Ácido Hialurônico , Neoplasias , Microambiente Tumoral , Resistencia a Medicamentos Antineoplásicos , Matriz Extracelular , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa