Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Nature ; 585(7823): 91-95, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32788726

RESUMO

Signalling between cells of the neurovascular unit, or neurovascular coupling, is essential to match local blood flow with neuronal activity. Pericytes interact with endothelial cells and extend processes that wrap capillaries, covering up to 90% of their surface area1,2. Pericytes are candidates to regulate microcirculatory blood flow because they are strategically positioned along capillaries, contain contractile proteins and respond rapidly to neuronal stimulation3,4, but whether they synchronize microvascular dynamics and neurovascular coupling within a capillary network was unknown. Here we identify nanotube-like processes that connect two bona fide pericytes on separate capillary systems, forming a functional network in the mouse retina, which we named interpericyte tunnelling nanotubes (IP-TNTs). We provide evidence that these (i) have an open-ended proximal side and a closed-ended terminal (end-foot) that connects with distal pericyte processes via gap junctions, (ii) carry organelles including mitochondria, which can travel along these processes, and (iii) serve as a conduit for intercellular Ca2+ waves, thus mediating communication between pericytes. Using two-photon microscope live imaging, we demonstrate that retinal pericytes rely on IP-TNTs to control local neurovascular coupling and coordinate light-evoked responses between adjacent capillaries. IP-TNT damage following ablation or ischaemia disrupts intercellular Ca2+ waves, impairing blood flow regulation and neurovascular coupling. Notably, pharmacological blockade of Ca2+ influx preserves IP-TNTs, rescues light-evoked capillary responses and restores blood flow after reperfusion. Our study thus defines IP-TNTs and characterizes their critical role in regulating neurovascular coupling in the living retina under both physiological and pathological conditions.


Assuntos
Nanotubos , Acoplamento Neurovascular , Pericitos/metabolismo , Animais , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Cálcio/metabolismo , Sinalização do Cálcio , Capilares/fisiopatologia , Capilares/efeitos da radiação , Comunicação Celular , Feminino , Junções Comunicantes/metabolismo , Hemodinâmica , Masculino , Camundongos , Mitocôndrias/metabolismo , Acoplamento Neurovascular/fisiologia , Pericitos/citologia , Pericitos/patologia , Retina/citologia , Retina/patologia
2.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35135877

RESUMO

Reduced blood flow and impaired neurovascular coupling are recognized features of glaucoma, the leading cause of irreversible blindness worldwide, but the mechanisms underlying these defects are unknown. Retinal pericytes regulate microcirculatory blood flow and coordinate neurovascular coupling through interpericyte tunneling nanotubes (IP-TNTs). Using two-photon microscope live imaging of the mouse retina, we found reduced capillary diameter and impaired blood flow at pericyte locations in eyes with high intraocular pressure, the most important risk factor to develop glaucoma. We show that IP-TNTs are structurally and functionally damaged by ocular hypertension, a response that disrupted light-evoked neurovascular coupling. Pericyte-specific inhibition of excessive Ca2+ influx rescued hemodynamic responses, protected IP-TNTs and neurovascular coupling, and enhanced retinal neuronal function as well as survival in glaucomatous retinas. Our study identifies pericytes and IP-TNTs as potential therapeutic targets to counter ocular pressure-related microvascular deficits, and provides preclinical proof of concept that strategies aimed to restore intrapericyte calcium homeostasis rescue autoregulatory blood flow and prevent neuronal dysfunction.


Assuntos
Estruturas da Membrana Celular/fisiologia , Glaucoma/patologia , Pericitos/fisiologia , Retina/citologia , Retina/patologia , Animais , Antígenos , Cálcio/metabolismo , Feminino , Deleção de Genes , Regulação da Expressão Gênica , Glaucoma/etiologia , Fenômenos Magnéticos , Masculino , Camundongos , Microesferas , Nanotubos , Regiões Promotoras Genéticas , Proteoglicanas , Vasos Retinianos/patologia , Técnicas de Cultura de Tecidos
3.
Brain ; 141(7): 1963-1980, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29931057

RESUMO

Dendrite pathology and synapse disassembly are critical features of chronic neurodegenerative diseases. In spite of this, the capacity of injured neurons to regenerate dendrites has been largely ignored. Here, we show that, upon axonal injury, retinal ganglion cells undergo rapid dendritic retraction and massive synapse loss that preceded neuronal death. Human recombinant insulin, administered as eye drops or systemically after dendritic arbour shrinkage and prior to cell loss, promoted robust regeneration of dendrites and successful reconnection with presynaptic targets. Insulin-mediated regeneration of excitatory postsynaptic sites on retinal ganglion cell dendritic processes increased neuronal survival and rescued light-triggered retinal responses. Further, we show that axotomy-induced dendrite retraction triggered substantial loss of the mammalian target of rapamycin (mTOR) activity exclusively in retinal ganglion cells, and that insulin fully reversed this response. Targeted loss-of-function experiments revealed that insulin-dependent activation of mTOR complex 1 (mTORC1) is required for new dendritic branching to restore arbour complexity, while complex 2 (mTORC2) drives dendritic process extension thus re-establishing field area. Our findings demonstrate that neurons in the mammalian central nervous system have the intrinsic capacity to regenerate dendrites and synapses after injury, and provide a strong rationale for the use of insulin and/or its analogues as pro-regenerative therapeutics for intractable neurodegenerative diseases including glaucoma.


Assuntos
Dendritos/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Sinapses/patologia , Animais , Axônios/metabolismo , Sistema Nervoso Central/metabolismo , Dendritos/metabolismo , Dendritos/fisiologia , Glaucoma , Insulina/fisiologia , Insulina/uso terapêutico , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Camundongos , Regeneração Nervosa/efeitos dos fármacos , Nervo Óptico/citologia , Traumatismos do Nervo Óptico/tratamento farmacológico , Retina/lesões , Células Ganglionares da Retina/citologia , Transdução de Sinais , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Serina-Treonina Quinases TOR/metabolismo
4.
Adv Exp Med Biol ; 1147: 189-213, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31147879

RESUMO

Recent stroke research has shifted the focus to the microvasculature from neuron-centric views. It is increasingly recognized that a successful neuroprotection is not feasible without microvascular protection. On the other hand, recent studies on pericytes, long-neglected cells on microvessels have provided insight into the regulation of microcirculation. Pericytes play an essential role in matching the metabolic demand of nervous tissue with the blood flow in addition to regulating the development and maintenance of the blood-brain barrier (BBB), leukocyte trafficking across the BBB and angiogenesis. Pericytes appears to be highly vulnerable to injury. Ischemic injury to pericytes on cerebral microvasculature unfavorably impacts the stroke-induced tissue damage and brain edema by disrupting microvascular blood flow and BBB integrity. Strongly supporting this, clinical imaging studies show that tissue reperfusion is not always obtained after recanalization. Therefore, prevention of pericyte dysfunction may improve the outcome of recanalization therapies by promoting microcirculatory reperfusion and preventing hemorrhage and edema. In the peri-infarct tissue, pericytes are detached from microvessels and promote angiogenesis and neurogenesis, and hence positively effect stroke outcome. Expectedly, we will learn more about the place of pericytes in CNS pathologies including stroke and devise approaches to treat them in the next decades.


Assuntos
Isquemia Encefálica , Pericitos , Acidente Vascular Cerebral , Barreira Hematoencefálica , Humanos , Microcirculação
5.
Prog Retin Eye Res ; 97: 101217, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37778617

RESUMO

Retinal ganglion cells, the neurons that die in glaucoma, are endowed with a high metabolism requiring optimal provision of oxygen and nutrients to sustain their activity. The timely regulation of blood flow is, therefore, essential to supply firing neurons in active areas with the oxygen and glucose they need for energy. Many glaucoma patients suffer from vascular deficits including reduced blood flow, impaired autoregulation, neurovascular coupling dysfunction, and blood-retina/brain-barrier breakdown. These processes are tightly regulated by a community of cells known as the neurovascular unit comprising neurons, endothelial cells, pericytes, Müller cells, astrocytes, and microglia. In this review, the neurovascular unit takes center stage as we examine the ability of its members to regulate neurovascular interactions and how their function might be altered during glaucomatous stress. Pericytes receive special attention based on recent data demonstrating their key role in the regulation of neurovascular coupling in physiological and pathological conditions. Of particular interest is the discovery and characterization of tunneling nanotubes, thin actin-based conduits that connect distal pericytes, which play essential roles in the complex spatial and temporal distribution of blood within the retinal capillary network. We discuss cellular and molecular mechanisms of neurovascular interactions and their pathophysiological implications, while highlighting opportunities to develop strategies for vascular protection and regeneration to improve functional outcomes in glaucoma.


Assuntos
Células Endoteliais , Nanotubos , Humanos , Células Endoteliais/metabolismo , Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Oxigênio/metabolismo
6.
Mol Vis ; 18: 675-93, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22509098

RESUMO

PURPOSE: To investigate the anatomic and functional changes triggered by light exposure in the albino mouse retina and compare them with those observed in the albino rat. METHODS: BALB/c albino mice were exposed to 3,000 lx of white light during 24 h and their retinas analyzed from 1 to 180 days after light exposure (ALE). Left pupil mydriasis was induced with topical atropine. Retinal function was analyzed by electroretinographic (ERG) recording. To assess retinal degeneration, hematoxylin and eosin staining, the TdT-mediated dUTP nick-end labeling (TUNEL) technique, and quantitative immunohistofluorescence for synaptophysin and protein kinase Cα (PKCα) were used in cross sections. Intravenous injection of horseradish peroxidase and Fluoro-Gold™ tracing were used in whole-mounted retinas to study the retinal vasculature and the retinal ganglion cell (RGC) population, respectively. RESULTS: Light exposure caused apoptotic photoreceptor death in the central retina. This death was more severe in the dorsal than in the ventral retina, sparing the periphery. Neither retinal vascular leakage nor retinal ganglion cell death was observed ALE. The electroretinographic a-wave was permanently impaired, while the b-wave decreased but recovered gradually by 180 days ALE. The scotopic threshold responses, associated with the inner retinal function, diminished at first but recovered completely by 14 days ALE. This functional recovery was concomitant with the upregulation of protein kinase Cα and synaptophysin. Similar results were obtained in both eyes, irrespective of mydriasis. CONCLUSIONS: In albino mice, light exposure induces substantial retinal damage, but the surviving photoreceptors, together with compensatory morphological/molecular changes, allow an important restoration of the retinal function.


Assuntos
Luz/efeitos adversos , Células Fotorreceptoras/efeitos da radiação , Recuperação de Função Fisiológica/fisiologia , Células Ganglionares da Retina/efeitos da radiação , Vasos Retinianos/efeitos da radiação , Albinismo , Animais , Apoptose/efeitos da radiação , Eletrorretinografia , Amarelo de Eosina-(YS) , Feminino , Hematoxilina , Camundongos , Camundongos Endogâmicos BALB C , Células Fotorreceptoras/citologia , Células Fotorreceptoras/metabolismo , Proteína Quinase C-alfa/biossíntese , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Vasos Retinianos/metabolismo , Sinaptofisina , Regulação para Cima , Proteínas de Transporte Vesicular/biossíntese
7.
Cell Rep ; 40(11): 111324, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36103832

RESUMO

Deficits in mitochondrial transport are a common feature of neurodegenerative diseases. We investigated whether loss of components of the mitochondrial transport machinery impinge directly on metabolic stress, neuronal death, and circuit dysfunction. Using multiphoton microscope live imaging, we showed that ocular hypertension, a major risk factor in glaucoma, disrupts mitochondria anterograde axonal transport leading to energy decline in vulnerable neurons. Gene- and protein-expression analysis revealed loss of the adaptor disrupted in schizophrenia 1 (Disc1) in retinal neurons subjected to high intraocular pressure. Disc1 gene delivery was sufficient to rescue anterograde transport and replenish axonal mitochondria. A genetically encoded ATP sensor combined with longitudinal live imaging showed that Disc1 supplementation increased ATP production in stressed neurons. Disc1 gene therapy promotes neuronal survival, reverses abnormal single-cell calcium dynamics, and restores visual responses. Our study demonstrates that enhancing anterograde mitochondrial transport is an effective strategy to alleviate metabolic stress and neurodegeneration.


Assuntos
Transporte Axonal , Proteínas do Tecido Nervoso , Trifosfato de Adenosina/metabolismo , Transporte Axonal/fisiologia , Suplementos Nutricionais , Mitocôndrias/metabolismo , Proteínas do Tecido Nervoso/metabolismo
8.
Mol Vis ; 17: 1716-33, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21738401

RESUMO

PURPOSE: To analyze the damage produced by light in mydriatic and miotic albino retinas under two different sources of light. METHODS: Albino Sprague Dawley female rats were exposed to 3,000 lx during 48 h under two different light sources: linear and circular bulbs. Before exposure, their left pupils were dilated. Before and at different times after light exposure (ALE), electroretinographic signals were recorded. One week before processing, retinal ganglion cells (RGCs) were traced by applying fluorogold on the superior colliculi. Just before processing, some animals were intravenously injected with horseradish peroxidase to analyze retinal vascular leakage. At different times ALE, animals were sacrificed and their retinas dissected as whole mounts or cross-sections. Cross-sections were used to study the retinal degeneration and to detect apoptotic nuclei by the transferase dUTP nick end labeling (TUNEL) technique. Whole mounts were used to analyze vascular leakage; investigate the nerve fiber layer, identified by immunodetection of neurofilaments; and quantify the whole population of RGCs identified by fluorogold tracing and Brn3a immunodetection. With the quantitative data, detailed isodensity maps were generated to study the spatial loss of RGCs. RESULTS: Phototoxicity causes an immediate and permanent abolishment of the electroretinographic response. Early ALE, photoreceptors degenerate by apoptosis and this death is more severe in mydriatic conditions and under circular bulbs. Photoreceptor loss starts in an arciform dorsomedial retinal area, but at 3 months ALE has spread to the whole retina and there are no differences related to either pupil dilation or light source. Three months ALE, RGC axons show distorted trajectories and abnormal expression of neurofilaments. Six months or more ALE, there is significant death of RGCs caused by axonal strangulation by displaced inner retinal vessels. Topography of the surviving RGCs shows that their loss is not uniform throughout the retina. CONCLUSIONS: Light damage to photoreceptors depends on pupil dilation and light source, but affects all retinal layers with time. These deteriorative events are also observed in light-induced and inherited retinal degenerations in pigmented animals, but occur differently. Thus, the role of ocular pigmentation and the etiology of photoreceptor degeneration on retinal remodelling deserve further investigation.


Assuntos
Axônios/efeitos da radiação , Células Fotorreceptoras , Degeneração Retiniana , Células Ganglionares da Retina , Albinismo , Animais , Apoptose/efeitos da radiação , Dilatação/métodos , Eletrorretinografia , Feminino , Imuno-Histoquímica , Luz/efeitos adversos , Microtomia , Células Fotorreceptoras/citologia , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/efeitos da radiação , Pigmentação , Pupila/efeitos da radiação , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/citologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/efeitos da radiação , Vasos Retinianos/efeitos da radiação
9.
Histol Histopathol ; 36(6): 633-643, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33595091

RESUMO

The proper delivery of blood is essential for healthy neuronal function. The anatomical substrate for this precise mechanism is the neurovascular unit, which is formed by neurons, glial cells, endothelia, smooth muscle cells, and pericytes. Based on their particular location on the vessel wall, morphology, and protein expression, pericytes have been proposed as cells capable of regulating capillary blood flow. Pericytes are located around the microvessels, wrapping them with their processes. Their morphology and protein expression substantially vary along the vascular tree. Their contractibility is mediated by a unique cytoskeleton organization formed by filaments of actin that allows pericyte deformability with the consequent mechanical force transferred to the extracellular matrix for changing the diameter. Pericyte ultrastructure is characterized by large mitochondria likely to provide energy to regulate intracellular calcium concentration and fuel contraction. Accordingly, pericytes with compromised energy show a sustained intracellular calcium increase that leads to persistent microvascular constriction. Pericyte morphology is highly plastic and adapted for varying contractile capability along the microvascular tree, making pericytes ideal cells to regulate the capillary blood flow in response to local neuronal activity. Besides the vascular regulation, pericytes also play a role in the maintenance of the blood-brain/retina barrier, neovascularization and angiogenesis, and leukocyte transmigration. Here, we review the morphological and functional features of the pericytes as well as potential specific markers for the study of pericytes in the brain and retina.


Assuntos
Pericitos , Actinas/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Cálcio/metabolismo , Capilares/metabolismo , Hiperemia/etiologia , Hiperemia/patologia , Microvasos/metabolismo , Contração Muscular/fisiologia , Miócitos de Músculo Liso/metabolismo , Neovascularização Patológica/metabolismo , Pericitos/citologia , Pericitos/metabolismo , Retina/metabolismo
10.
Mol Neurodegener ; 16(1): 43, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34187514

RESUMO

BACKGROUND: The maintenance of complex dendritic arbors and synaptic transmission are processes that require a substantial amount of energy. Bioenergetic decline is a prominent feature of chronic neurodegenerative diseases, yet the signaling mechanisms that link energy stress with neuronal dysfunction are poorly understood. Recent work has implicated energy deficits in glaucoma, and retinal ganglion cell (RGC) dendritic pathology and synapse disassembly are key features of ocular hypertension damage. RESULTS: We show that adenosine monophosphate-activated protein kinase (AMPK), a conserved energy biosensor, is strongly activated in RGC from mice with ocular hypertension and patients with primary open angle glaucoma. Our data demonstrate that AMPK triggers RGC dendrite retraction and synapse elimination. We show that the harmful effect of AMPK is exerted through inhibition of the mammalian target of rapamycin complex 1 (mTORC1). Attenuation of AMPK activity restores mTORC1 function and rescues dendrites and synaptic contacts. Strikingly, AMPK depletion promotes recovery of light-evoked retinal responses, improves axonal transport, and extends RGC survival. CONCLUSIONS: This study identifies AMPK as a critical nexus between bioenergetic decline and RGC dysfunction during pressure-induced stress, and highlights the importance of targeting energy homeostasis in glaucoma and other neurodegenerative diseases.


Assuntos
Adenilato Quinase/metabolismo , Glaucoma de Ângulo Aberto/metabolismo , Glaucoma de Ângulo Aberto/patologia , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Animais , Dendritos/patologia , Ativação Enzimática/fisiologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Sinapses/patologia
11.
Exp Eye Res ; 91(2): 273-85, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20650699

RESUMO

In adult albino mice the effects of increased intraocular pressure on the outer retina and its circuitry was investigated at intervals ranging 3-14 weeks. Ocular hypertension (OHT) was induced by cauterizing the vessels draining the anterior part of the mice eye, as recently reported (Salinas-Navarro et al., 2009a). Electroretinographic (ERG) responses were recorded simultaneously from both eyes and compared each other prior to and at different survival intervals of 2, 8 or 12 weeks after lasering. Animals were processed at 3, 9 or 14 weeks after lasering, and radial sections were obtained in the cryostat and further processed for immunocytochemistry using antibodies against recoverin, gamma-transducin, Protein Kinase C-alpha (PKC-alpha), calbindin or synaptophysin. The synaptic ribbons were identified using an antibody against the protein bassoon, which labels photoreceptor ribbons and nuclei were identified using TO-PRO. Laser photocoagulation of the perilimbar and episcleral veins of the left eye resulted in an increase in mean intraocular pressure to approximately over twice its baseline by 24 h that was maintained for approximately five days reaching basal levels by 1 week. ERG recordings from the different groups of mice showed their a-, b-wave and scotopic threshold response (STR) amplitudes, when compared to their contralateral fellow eye, reduced to 62%, 52% and 23% at 12 weeks after lasering. Three weeks after lasering, immunostaining with recoverin and transducin antibodies could not document any changes in the outer nuclear layer (ONL) but both ON-rod bipolar and horizontal cells had lost their dendritic processes in the outer plexiform layer (OPL). Sprouting of horizontal and bipolar cell processes were observed into the ONL. Fourteen weeks after lasering, protein kinase-C antibodies showed morphologic changes of ON-rod bipolar cells and calbindin staining showed abnormal horizontal cells and a loss of their relationship with their presynaptic input. Moreover, at this time, quantitative studies indicate significant diminutions in the number of photoreceptor synaptic ribbons/100 microm, and in the thickness of the outer nuclear and plexiform layer, when compared to their fellow eyes. Increased intraocular pressure in Swiss mice results in permanent alterations of their full field ERG responses and in changes of the inner and outer retinal circuitries.


Assuntos
Pressão Intraocular , Hipertensão Ocular/complicações , Degeneração Retiniana/etiologia , Segmento Interno das Células Fotorreceptoras da Retina/patologia , Segmento Externo das Células Fotorreceptoras da Retina/patologia , Doença Aguda , Animais , Calbindinas , Modelos Animais de Doenças , Eletrorretinografia , Técnica Indireta de Fluorescência para Anticorpo , Masculino , Camundongos , Microscopia Confocal , Proteína Quinase C-alfa/metabolismo , Recoverina/metabolismo , Degeneração Retiniana/metabolismo , Degeneração Retiniana/fisiopatologia , Segmento Interno das Células Fotorreceptoras da Retina/metabolismo , Segmento Externo das Células Fotorreceptoras da Retina/metabolismo , Proteína G de Ligação ao Cálcio S100/metabolismo , Sinaptofisina/metabolismo , Transducina/metabolismo
12.
Exp Eye Res ; 90(1): 168-83, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19835874

RESUMO

Ocular hypertension (OHT) is the main risk factor of glaucoma, a neuropathy leading to blindness. Here we have investigated the effects of laser photocoagulation (LP)-induced OHT, on the survival and retrograde axonal transport (RAT) of adult rat retinal ganglion cells (RGC) from 1 to 12 wks. Active RAT was examined with fluorogold (FG) applied to both superior colliculi (SCi) 1 wk before processing and passive axonal diffusion with dextran tetramethylrhodamine (DTMR) applied to the optic nerve (ON) 2 d prior to sacrifice. Surviving RGCs were identified with FG applied 1 wk pre-LP or by Brn3a immunodetection. The ON and retinal nerve fiber layer were examined by RT97-neurofibrillar staining. RGCs were counted automatically and color-coded density maps were generated. OHT retinas showed absence of FG+ or DTMR+RGCs in focal, pie-shaped and diffuse regions of the retina which, by two weeks, amounted to, approximately, an 80% of RGC loss without further increase. At this time, there was a discrepancy between the total number of surviving FG-prelabelled RGCs and of DMTR+RGCs, suggesting that a large proportion of RGCs had their RAT impaired. This was further confirmed identifying surviving RGCs by their Brn3a expression. From 3 weeks onwards, there was a close correspondence of DTMR+RGCs and FG+RGCs in the same retinal regions, suggesting axonal constriction at the ON head. Neurofibrillar staining revealed, in ONs, focal degeneration of axonal bundles and, in the retinal areas lacking backlabeled RGCs, aberrant staining of RT97 characteristic of axotomy. LP-induced OHT results in a crush-like injury to ON axons leading to the anterograde and protracted retrograde degeneration of the intraocular axons and RGCs.


Assuntos
Transporte Axonal , Hipertensão Ocular/complicações , Doenças do Nervo Óptico/etiologia , Degeneração Retiniana/etiologia , Células Ganglionares da Retina/patologia , Animais , Contagem de Células , Dextranos/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Pressão Intraocular , Fotocoagulação a Laser , Doenças do Nervo Óptico/metabolismo , Doenças do Nervo Óptico/patologia , Ratos , Ratos Sprague-Dawley , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia , Rodaminas/metabolismo , Estilbamidinas/metabolismo , Tonometria Ocular
13.
Mol Vis ; 15: 2373-83, 2009 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-19936311

RESUMO

PURPOSE: To investigate the different components of full-field flash electroretinogram (ERG) responses in adult albino and pigmented rats at various time intervals following optic nerve transection (ONT). METHODS: In adult Sprague-Dawley (SD, albino) and Piebald-Viral-Glaxo (PVG, pigmented) rats, the left optic nerve was transected intraorbitally to induce retinal ganglion cell (RGC) death. ERG responses were recorded simultaneously from both eyes beforehand and at 1, 2, 4, and 12 week intervals after ONT. The ERG a- and b-waves and the scotopic threshold responses (STR) were analyzed in scotopic conditions. White light stimuli of intensities ranging from 10(-6) to 10(-4) cd.s.m(-2) were used to record the positive and negative scotopic threshold responses (pSTR and nSTR), while stimulus light intensities ranging from 10(-4) to 10(2) cd.s.m(-2) were used to analyze the a- and b-wave amplitudes of standard ERG recordings. RESULTS: In the albino rats, one week after intraorbital ONT, the STR mean amplitude decreased significantly, to approximately 60% of the values registered for the contralateral eye (p<0.05), which had not been operated on; standard ERG a- and b-waves showed a small reduction in amplitude-to approximately 85%. By two weeks after ONT, the STR mean amplitude was approximately 40% that of the contralateral eye, while the a- and b-wave amplitudes had further decreased to approximately 75%. Four weeks after ONT, the STR had fallen to 60% of that of the contralateral eyes, whereas the a- and b-waves reached values of approximately 90%. Twelve weeks after ONT, the STR remained significantly reduced to approximately 45%, whereas the a- and b-waves reached values of approximately 90%. In the pigmented rats, one week after intraorbital ONT, the mean amplitude had decreased significantly, to approximately 60% for the pSTR and to 80% for the nSTR of the values registered for the intact contralateral eye (p<0.05); while the standard ERG a- and b-waves showed a small reduction in amplitude to approximately 90%. Two weeks after ONT, the STR mean amplitude was approximately 55%, while the a- and b-wave amplitudes had further decreased to approximately 65%. Four weeks after ONT, the STR also was significantly reduced, to only 40%, whereas the a- and b-waves reached values of approximately 60%. Twelve weeks after ONT, the pSTR and nSTR remained significantly reduced to approximately 40% and 70%, respectively; whereas the a- and b-waves reached values of approximately 80%. CONCLUSIONS: Optic nerve injury results in transient reductions of the major ERG components, the a- and b-waves, as well as permanent reductions of the early components of the ERG, the negative and positive scotopic threshold responses. Because ONT induces massive RGC loss, it is likely that permanent reduction in the STR represents a lack of the RGC population, thus highlighting the importance of the STR recordings as an electrophysiological tool for the assessment of RGC function.


Assuntos
Albinismo/fisiopatologia , Pigmentação/fisiologia , Albinismo/complicações , Animais , Axotomia , Escuridão , Eletrorretinografia , Traumatismos do Nervo Óptico/complicações , Traumatismos do Nervo Óptico/fisiopatologia , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
14.
Mol Vis ; 15: 2578-98, 2009 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-20011633

RESUMO

PURPOSE: To investigate the effects of laser photocoagulation (LP)-induced ocular hypertension (OHT) on the survival and retrograde axonal transport of retinal ganglion cells (RGC), as well as on the function of retinal layers. METHODS: Adult albino Swiss mice (35-45 g) received laser photocoagulation of limbal and episcleral veins in the left eye. Mice were sacrificed at 8, 17, 35, and 63 days. Intraocular pressure (IOP) in both eyes was measured with a Tono-Lab before LP and at various days after LP. Flash electroretinogram (ERG) scotopic threshold response (STR) and a- and b-wave amplitudes were recorded before LP and at various times after LP. RGCs were labeled with 10% hydroxystilbamidine methanesulfonate (OHSt) applied to both superior colliculi before sacrifice and in some mice, with dextran tetramethylrhodamine (DTMR) applied to the ocular stump of the intraorbitally transected optic nerve. Retinas were immunostained for RT97 or Brn3a. Retinas were prepared as whole-mounts and photographed under a fluorescence microscope. Labeled RGCs were counted using image analysis software, and an isodensity contour plot was generated for each retina. RESULTS: IOP increased to twice its basal values by 24 h and was maintained until day 5, after which IOP gradually declined to reach basal values by 1 wk. Similar IOP increases were observed in all groups. The mean total number of OHSt(+) RGCs was 13,428+/-6,295 (n=12), 10,456+/-14,301 (n=13), 12,622+/-14,174 (n=21), and 10,451+/-13,949 (n=13) for groups I, II, III, and IV, respectively; these values represented 28%, 23%, 26%, and 22% of the values found in their contralateral fellow retinas. The mean total population of Brn3a(+) RGCs was 24,343+/-5,739 (n=12) and 10,219+/-8,887 (n=9), respectively, for groups I and III; these values represented 49% and 20%, respectively, of the values found in their fellow eyes. OHT retinas showed an absence of OHSt(+) and DTMR(+) RGCs in both focal wedge-shaped and diffuse regions of the retina. By 1 wk, there was a discrepancy between the total number of surviving OHSt(+) RGCs and Brn3a(+) RGCs, suggesting that a large proportion of RGCs had impaired retrograde axonal transport. In the retinal areas lacking backlabeled RGCs, neurofibrillar staining revealed aberrant expression of RT97 within axons and RGC bodies characteristic of axotomy. Elevated IOP induced significant reductions in the registered ERG waves, including positive STR, a- and b-waves, that were observed by 24 h and remained throughout the period of study for the three groups analyzed. CONCLUSIONS: LP of the perilimbal and episcleral veins resulted in OHT leading to a lack of retrograde axonal transport in approximately 75% of the original RGC population. This lack did not progress further between 8 and 63 days, and it was both focal (in sectors with the apex located in the optic disc) and diffuse within the retina. In addition, severe amplitude diminutions of the STR and a- and b-waves of the ERG appeared as early as 24 h after lasering and did not recover throughout the period of study, indicating that increased IOP results in severe damage to the innermost, inner nuclear, and outer nuclear layers of the retina.


Assuntos
Envelhecimento/patologia , Lasers , Hipertensão Ocular/patologia , Hipertensão Ocular/fisiopatologia , Retina/patologia , Retina/fisiopatologia , Animais , Axônios/metabolismo , Axônios/patologia , Contagem de Células , Eletrorretinografia , Imunofluorescência , Pressão Intraocular/fisiologia , Fotocoagulação , Masculino , Camundongos , Proteínas de Neurofilamentos/metabolismo , Hipertensão Ocular/induzido quimicamente , Fosforilação , Células Ganglionares da Retina/metabolismo , Células Ganglionares da Retina/patologia , Coloração e Rotulagem , Estilbamidinas/metabolismo , Fatores de Tempo
15.
Acta Neuropathol Commun ; 7(1): 134, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31429795

RESUMO

Increasing evidence indicates that pericytes are vulnerable cells, playing pathophysiological roles in various neurodegenerative processes. Microvascular pericytes contract during cerebral and coronary ischemia and do not relax after re-opening of the occluded artery, causing incomplete reperfusion. However, the cellular mechanisms underlying ischemia-induced pericyte contraction, its delayed emergence, and whether it is pharmacologically reversible are unclear. Here, we investigate i) whether ischemia-induced pericyte contractions are mediated by alpha-smooth muscle actin (α-SMA), ii) the sources of calcium rise in ischemic pericytes, and iii) if peri-microvascular glycogen can support pericyte metabolism during ischemia. Thus, we examined pericyte contractility in response to retinal ischemia both in vivo, using adaptive optics scanning light ophthalmoscopy and, ex vivo, using an unbiased stereological approach. We found that microvascular constrictions were associated with increased calcium in pericytes as detected by a genetically encoded calcium indicator (NG2-GCaMP6) or a fluoroprobe (Fluo-4). Knocking down α-SMA expression with RNA interference or fixing F-actin with phalloidin or calcium antagonist amlodipine prevented constrictions, suggesting that constrictions resulted from calcium- and α-SMA-mediated pericyte contractions. Carbenoxolone or a Cx43-selective peptide blocker also reduced calcium rise, consistent with involvement of gap junction-mediated mechanisms in addition to voltage-gated calcium channels. Pericyte calcium increase and capillary constrictions became significant after 1 h of ischemia and were coincident with depletion of peri-microvascular glycogen, suggesting that glucose derived from glycogen granules could support pericyte metabolism and delay ischemia-induced microvascular dysfunction. Indeed, capillary constrictions emerged earlier when glycogen breakdown was pharmacologically inhibited. Constrictions persisted despite recanalization but were reversible with pericyte-relaxant adenosine administered during recanalization. Our study demonstrates that retinal ischemia, a common cause of blindness, induces α-SMA- and calcium-mediated persistent pericyte contraction, which can be delayed by glucose driven from peri-microvascular glycogen. These findings clarify the contractile nature of capillary pericytes and identify a novel metabolic collaboration between peri-microvascular end-feet and pericytes.


Assuntos
Actinas/metabolismo , Capilares/metabolismo , Glicogênio/deficiência , Isquemia/diagnóstico por imagem , Pericitos/metabolismo , Vasos Retinianos/metabolismo , Vasoconstrição/fisiologia , Actinas/antagonistas & inibidores , Actinas/genética , Animais , Capilares/diagnóstico por imagem , Isquemia/metabolismo , Camundongos , Camundongos Transgênicos , Oftalmoscopia/métodos , Pericitos/patologia , Retina/diagnóstico por imagem , Retina/metabolismo , Doenças Retinianas/diagnóstico por imagem , Doenças Retinianas/metabolismo , Vasos Retinianos/diagnóstico por imagem
16.
Elife ; 72018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29561727

RESUMO

Recent evidence suggests that capillary pericytes are contractile and play a crucial role in the regulation of microcirculation. However, failure to detect components of the contractile apparatus in capillary pericytes, most notably α-smooth muscle actin (α-SMA), has questioned these findings. Using strategies that allow rapid filamentous-actin (F-actin) fixation (i.e. snap freeze fixation with methanol at -20°C) or prevent F-actin depolymerization (i.e. with F-actin stabilizing agents), we demonstrate that pericytes on mouse retinal capillaries, including those in intermediate and deeper plexus, express α-SMA. Junctional pericytes were more frequently α-SMA-positive relative to pericytes on linear capillary segments. Intravitreal administration of short interfering RNA (α-SMA-siRNA) suppressed α-SMA expression preferentially in high order branch capillary pericytes, confirming the existence of a smaller pool of α-SMA in distal capillary pericytes that is quickly lost by depolymerization. We conclude that capillary pericytes do express α-SMA, which rapidly depolymerizes during tissue fixation thus evading detection by immunolabeling.


Assuntos
Actinas/metabolismo , Capilares/metabolismo , Pericitos/metabolismo , Vasos Retinianos/metabolismo , Actinas/genética , Animais , Capilares/citologia , Imuno-Histoquímica , Camundongos Transgênicos , Músculo Liso/metabolismo , Polimerização , Interferência de RNA
17.
Mol Neurodegener ; 12(1): 58, 2017 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-28774322

RESUMO

BACKGROUND: Tau is an axon-enriched protein that binds to and stabilizes microtubules, and hence plays a crucial role in neuronal function. In Alzheimer's disease (AD), pathological tau accumulation correlates with cognitive decline. Substantial visual deficits are found in individuals affected by AD including a preferential loss of retinal ganglion cells (RGCs), the neurons that convey visual information from the retina to the brain. At present, however, the mechanisms that underlie vision changes in these patients are poorly understood. Here, we asked whether tau plays a role in early retinal pathology and neuronal dysfunction in AD. METHODS: Alterations in tau protein and gene expression, phosphorylation, and localization were investigated by western blots, qPCR, and immunohistochemistry in the retina and visual pathways of triple transgenic mice (3xTg) harboring mutations in the genes encoding presenilin 1 (PS1M146 V), amyloid precursor protein (APPSwe), and tau (MAPTP301L). Anterograde axonal transport was assessed by intraocular injection of the cholera toxin beta subunit followed by quantification of tracer accumulation in the contralateral superior colliculus. RGC survival was analyzed on whole-mounted retinas using cell-specific markers. Reduction of tau expression was achieved following intravitreal injection of targeted siRNA. RESULTS: Our data demonstrate an age-related increase in endogenous retinal tau characterized by epitope-specific hypo- and hyper-phosphorylation in 3xTg mice. Retinal tau accumulation was observed as early as three months of age, prior to the reported onset of behavioral deficits, and preceded tau aggregation in the brain. Intriguingly, tau build up occurred in RGC soma and dendrites, while tau in RGC axons in the optic nerve was depleted. Tau phosphorylation changes and missorting correlated with substantial defects in anterograde axonal transport that preceded RGC death. Importantly, targeted siRNA-mediated knockdown of endogenous tau improved anterograde transport along RGC axons. CONCLUSIONS: Our study reveals profound tau pathology in the visual system leading to early retinal neuron damage in a mouse model of AD. Importantly, we show that tau accumulation promotes anterograde axonal transport impairment in vivo, and identify this response as an early feature of neuronal dysfunction that precedes cell death in the AD retina. These findings provide the first proof-of-concept that a global strategy to reduce tau accumulation is beneficial to improve axonal transport and mitigate functional deficits in AD and tauopathies.


Assuntos
Doença de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Transporte Axonal/fisiologia , Retina/metabolismo , Proteínas tau/metabolismo , Animais , Modelos Animais de Doenças , Camundongos Transgênicos , Células Ganglionares da Retina/metabolismo , Tauopatias/metabolismo , Tauopatias/patologia
18.
Sci Rep ; 7: 43276, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28240297

RESUMO

Seizure-driven brain damage in epilepsy accumulates over time, especially in the hippocampus, which can lead to sclerosis, cognitive decline, and death. Excitotoxicity is the prevalent model to explain ictal neurodegeneration. Current labeling technologies cannot distinguish between excitotoxicity and hypoxia, however, because they share common molecular mechanisms. This leaves open the possibility that undetected ischemic hypoxia, due to ictal blood flow restriction, could contribute to neurodegeneration previously ascribed to excitotoxicity. We tested this possibility with Confocal Laser Endomicroscopy (CLE) and novel stereological analyses in several models of epileptic mice. We found a higher number and magnitude of NG2+ mural-cell mediated capillary constrictions in the hippocampus of epileptic mice than in that of normal mice, in addition to spatial coupling between capillary constrictions and oxidative stressed neurons and neurodegeneration. These results reveal a role for hypoxia driven by capillary blood flow restriction in ictal neurodegeneration.


Assuntos
Capilares/patologia , Epilepsia/patologia , Hipocampo/patologia , Hipóxia/patologia , Doenças Neurodegenerativas/patologia , Convulsões/patologia , Animais , Antígenos/genética , Antígenos/metabolismo , Velocidade do Fluxo Sanguíneo , Capilares/diagnóstico por imagem , Capilares/metabolismo , Circulação Cerebrovascular , Modelos Animais de Doenças , Epilepsia/diagnóstico por imagem , Epilepsia/metabolismo , Expressão Gênica , Hipocampo/irrigação sanguínea , Hipocampo/diagnóstico por imagem , Hipocampo/metabolismo , Humanos , Hipóxia/diagnóstico por imagem , Hipóxia/metabolismo , Camundongos , Microscopia Confocal , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Estresse Oxidativo , Proteoglicanas/genética , Proteoglicanas/metabolismo , Convulsões/diagnóstico por imagem , Convulsões/metabolismo
19.
Brain Res ; 1623: 3-17, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25862573

RESUMO

Increases in neuronal activity cause an enhanced blood flow to the active brain area. This neurovascular coupling is regulated by multiple mechanisms: Adenosine and lactate produced as metabolic end-products couple activity with flow by inducing vasodilation. As a specific mechanism to the brain, synaptic activity-induced Ca(2+) increases in astrocytes, interneurons and neurons translate neuronal activity to vasoactive signals such as arachidonic acid metabolites and NO. K(+) released onto smooth muscle cells through Ca(2+)-activated K(+) channels on end-feet can also induce vasodilation during neuronal activity. An intense communication between the endothelia, pericytes and astrocytes is required for development and functioning of the neurovascular unit as well as the BBB. The ratio of pericytes to endothelial cells is higher in the cerebral microcirculation than other tissues. Pericytes play a role in distribution of microvascular blood flow in response to the local demand as a final regulatory step after arterioles, which feed a larger cohort of cells. Pericyte-endothelial communication is essential for vasculogenesis. Pericyte also take part in leukocyte infiltration and immune responses. The microvascular injury induced by ischemia/reperfusion plays a critical role in tissue survival after recanalization by inducing sustained pericyte contraction and microcirculatory clogging (no-reflow) and by disrupting BBB integrity. Suppression of oxidative/nitrative stress or sustained adenosine delivery during re-opening of an occluded artery improves the outcome of recanalization by promoting microcirculatory reflow. Pericyte dysfunction in retinal microvessels is the main cause of diabetic retinopathy. Recent findings suggest that the age-related microvascular dysfunction may initiate the neurodegenerative changes seen Alzheimer׳s dementia. This article is part of a Special Issue entitled SI: Cell Interactions In Stroke.


Assuntos
Encéfalo/fisiologia , Encéfalo/fisiopatologia , Microvasos/fisiologia , Microvasos/fisiopatologia , Neuroglia/fisiologia , Pericitos/fisiologia , Animais , Encéfalo/irrigação sanguínea , Humanos , Acoplamento Neurovascular/fisiologia
20.
PLoS One ; 10(3): e0121134, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25811653

RESUMO

To study the effects of ocular hypertension (OHT) on the visual system of C57BL/6 pigmented mice, the limbal and episcleral veins of the left eye were laser photocoagulated (LP). LP increased the intraocular pressure during the first five days (d), reaching basal values at 7d. To investigate the effect of OHT on the retinal ganglion cell (RGC) retrograde axonal transport, hydroxistilbamidine methanesulfonate (OHSt) was applied to both superior colliculi (SCi) and the retinas were dissected 2 or 4 weeks after LP. To determine RGC survival, these same retinas were immunoreacted against Brn3a (general RGC population) and melanopsin (intrinsically photosensitive RGCs, m+RGCs). To study whether OHT affected non-RGC neurons in the ganglion cell layer (GCL), RGCs were immunodetected with Brn3a and all GCL nuclei counterstained with DAPI in a group of animals examined 4 weeks post-LP. Innervation of the SCi was examined at 10 days, 8 or 14 weeks after LP with the orthogradely transported cholera toxin subunit-B. OHT resulted in diffuse and sectorial loss of OHSt+RGCs (50% at 2 weeks and 62% at 4 weeks) and in a comparable loss of Brn3a+RGCs at the same time intervals. m+RGCs decreased to 59% at 2 weeks and to 46% at 4 weeks, such loss was diffuse, did not parallel the sectorial loss of the general RGC population and was more severe in the superior-temporal retina. In the GCL, cell loss is selective for RGCs and does not affect other non-RGC neurons. The retinotectal innervation appeared significantly reduced at 10 days (55.7%) and did not progress further up to 14 weeks (46.6%). Thus, LP-induced OHT results in retrograde degeneration of RGCs and m+RGCs, as well as in the loss of CTB-labelled retinotectal terminals.


Assuntos
Hipertensão Ocular/fisiopatologia , Pigmentação , Vias Visuais/fisiopatologia , Animais , Contagem de Células , Indóis/metabolismo , Pressão Intraocular/efeitos dos fármacos , Fotocoagulação , Masculino , Camundongos Endogâmicos C57BL , Neurônios Aferentes/efeitos dos fármacos , Neurônios Aferentes/patologia , Hipertensão Ocular/patologia , Pigmentação/efeitos dos fármacos , Degeneração Retiniana/patologia , Degeneração Retiniana/fisiopatologia , Células Ganglionares da Retina/efeitos dos fármacos , Células Ganglionares da Retina/patologia , Opsinas de Bastonetes/metabolismo , Estilbenos/farmacologia , Colículos Superiores/efeitos dos fármacos , Colículos Superiores/patologia , Colículos Superiores/fisiopatologia , Fator de Transcrição Brn-3A/metabolismo , Vias Visuais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa