Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Phys Rev Lett ; 126(17): 175503, 2021 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-33988455

RESUMO

In situ femtosecond x-ray diffraction measurements and ab initio molecular dynamics simulations were performed to study the liquid structure of tantalum shock released from several hundred gigapascals (GPa) on the nanosecond timescale. The results show that the internal negative pressure applied to the liquid tantalum reached -5.6 (0.8) GPa, suggesting the existence of a liquid-gas mixing state due to cavitation. This is the first direct evidence to prove the classical nucleation theory which predicts that liquids with high surface tension can support GPa regime tensile stress.

2.
J Synchrotron Radiat ; 24(Pt 1): 196-204, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-28009559

RESUMO

Direct metrology of coherent short-wavelength beamlines is important for obtaining operational beam characteristics at the experimental site. However, since beam-time limitation imposes fast metrology procedures, a multi-parametric metrology from as low as a single shot is desirable. Here a two-dimensional (2D) procedure based on high-resolution Fresnel diffraction analysis is discussed and applied, which allowed an efficient and detailed beamline characterization at the SACLA XFEL. So far, the potential of Fresnel diffraction for beamline metrology has not been fully exploited because its high-frequency fringes could be only partly resolved with ordinary pixel-limited detectors. Using the high-spatial-frequency imaging capability of an irradiated LiF crystal, 2D information of the coherence degree, beam divergence and beam quality factor M2 were retrieved from simple diffraction patterns. The developed beam metrology was validated with a laboratory reference laser, and then successfully applied at a beamline facility, in agreement with the source specifications.

3.
Phys Rev Lett ; 113(23): 235001, 2014 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-25526131

RESUMO

The intricate spatial and energy distribution of magnetic fields, self-generated during high power laser irradiation (at Iλ^{2}∼10^{13}-10^{14} W.cm^{-2}.µm^{2}) of a solid target, and of the heat-carrying electron currents, is studied in inertial confinement fusion (ICF) relevant conditions. This is done by comparing proton radiography measurements of the fields to an improved magnetohydrodynamic description that fully takes into account the nonlocality of the heat transport. We show that, in these conditions, magnetic fields are rapidly advected radially along the target surface and compressed over long time scales into the dense parts of the target. As a consequence, the electrons are weakly magnetized in most parts of the plasma flow, and we observe a reemergence of nonlocality which is a crucial effect for a correct description of the energetics of ICF experiments.

4.
J Phys Condens Matter ; 36(20)2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38330460

RESUMO

Nominally-pure lithium fluoride (LiF) crystals were irradiated with monochromatic hard x-rays of energy 5, 7, 9 and 12 keV at the METROLOGIE beamline of the SOLEIL synchrotron facility, in order to understand the role of the selected x-ray energy on their visible photoluminescence (PL) response, which is used for high spatial resolution 2D x-ray imaging detectors characterized by a wide dynamic range. At the energies of 7 and 12 keV the irradiations were performed at five different doses corresponding to five uniformly irradiated areas, while at 5 and 9 keV only two irradiations at two different doses were carried out. The doses were planned in a range between 4 and 1.4 × 103Gy (10.5 mJ cm-3to 3.7 J cm-3), depending on the x-ray energy. After irradiation at the energies of 7 and 12 keV, the spectrally-integrated visible PL intensity of the F2and F3+colour centres (CCs) generated in the LiF crystals, carefully measured by fluorescence microscopy under blue excitation, exhibits a linear dependence on the irradiation dose in the investigated dose range. This linear behaviour was confirmed by the optical absorption spectra of the irradiated spots, which shows a similar linear behaviour for both the F2and F3+CCs, as derived from their overlapping absorption band at around 450 nm. At the highest x-ray energy, the average concentrations of the radiation-induced F, F2and F3+CCs were also estimated. The volume distributions of F2defects in the crystals irradiated with 5 and 9 keV x-rays were reconstructed in 3D by measuring their PL signal using a confocal laser scanning microscope operating in fluorescence mode. On-going investigations are focusing on the results obtained through thisz-scanning technique to explore the potential impact of absorption effects at the excitation laser wavelength.

5.
Phys Rev Lett ; 110(2): 025002, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23383908

RESUMO

The generation of astrophysically relevant jets, from magnetically collimated, laser-produced plasmas, is investigated through three-dimensional, magnetohydrodynamic simulations. We show that for laser intensities I∼10(12)-10(14) W cm(-2), a magnetic field in excess of ∼0.1 MG, can collimate the plasma plume into a prolate cavity bounded by a shock envelope with a standing conical shock at its tip, which recollimates the flow into a supermagnetosonic jet beam. This mechanism is equivalent to astrophysical models of hydrodynamic inertial collimation, where an isotropic wind is focused into a jet by a confining circumstellar toruslike envelope. The results suggest an alternative mechanism for a large-scale magnetic field to produce jets from wide-angle winds.

6.
Phys Rev Lett ; 110(6): 065003, 2013 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-23432262

RESUMO

The first experimental evidence of the higher-order harmonic radiation generated by periodically modulated targets (gratings) irradiated by relativistic, ultrashort (<30 fs), high intensity [Iλ(2)=10(20) (W/cm(2)) µm(2)] laser pulse is presented. The interference effects on the grating surface lead to the emission of high harmonics up to 45th order along the target surface when the laser beam is focused onto a grating target close to normal incidence (5°). By means of numerical simulations we demonstrate the possibility of controlling the composition of the higher harmonic spectrum and we prove the influence of the laser pulse parameters in the interaction area (laser focusing and wavefront curvature) on the emission angle of a certain high harmonic order.

7.
Phys Rev E ; 107(2-2): 025206, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36932569

RESUMO

Wetted-foam layers are of significant interest for inertial-confinement-fusion capsules, due to the control they provide over the convergence ratio of the implosion and the opportunity this affords to minimize hydrodynamic instability growth. However, the equation of state for fusion-relevant foams are not well characterized, and many simulations rely on modeling such foams as a homogeneous medium with the foam average density. To address this issue, an experiment was performed using the VULCAN Nd:glass laser at the Central Laser Facility. The aim was to measure the principal Hugoniot of TMPTA plastic foams at 260mg/cm^{3}, corresponding to the density of liquid DT-wetted-foam layers, and their "hydrodynamic equivalent" capsules. A VISAR was used to obtain the shock velocity of both the foam and an α-quartz reference layer, while streaked optical pyrometry provided the temperature of the shocked material. The measurements confirm that, for the 20-120 GPa pressure range accessed, this material can indeed be well described using the equation of state of the homogeneous medium at the foam density.

8.
Sci Rep ; 12(1): 10921, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35773286

RESUMO

Magnetic reconnection is a universal process in space, astrophysical, and laboratory plasmas. It alters magnetic field topology and results in energy release to the plasma. Here we report the experimental results of a pure electron outflow in magnetic reconnection, which is not accompanied with ion flows. By controlling an applied magnetic field in a laser produced plasma, we have constructed an experiment that magnetizes the electrons but not the ions. This allows us to isolate the electron dynamics from the ions. Collective Thomson scattering measurements reveal the electron Alfvénic outflow without ion outflow. The resultant plasmoid and whistler waves are observed with the magnetic induction probe measurements. We observe the unique features of electron-scale magnetic reconnection simultaneously in laser produced plasmas, including global structures, local plasma parameters, magnetic field, and waves.

9.
Phys Rev E ; 106(3-2): 035206, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36266806

RESUMO

Investigating the potential benefits of the use of magnetic fields in inertial confinement fusion experiments has given rise to experimental platforms like the Magnetized Liner Inertial Fusion approach at the Z-machine (Sandia National Laboratories) or its laser-driven equivalent at OMEGA (Laboratory for Laser Energetics). Implementing these platforms at MegaJoule-scale laser facilities, such as the Laser MegaJoule (LMJ) or the National Ignition Facility (NIF), is crucial to reaching self-sustained nuclear fusion and enlarges the level of magnetization that can be achieved through a higher compression. In this paper, we present a complete design of an experimental platform for magnetized implosions using cylindrical targets at LMJ. A seed magnetic field is generated along the axis of the cylinder using laser-driven coil targets, minimizing debris and increasing diagnostic access compared with pulsed power field generators. We present a comprehensive simulation study of the initial B field generated with these coil targets, as well as two-dimensional extended magnetohydrodynamics simulations showing that a 5 T initial B field is compressed up to 25 kT during the implosion. Under these circumstances, the electrons become magnetized, which severely modifies the plasma conditions at stagnation. In particular, in the hot spot the electron temperature is increased (from 1 keV to 5 keV) while the density is reduced (from 40g/cm^{3} to 7g/cm^{3}). We discuss how these changes can be diagnosed using x-ray imaging and spectroscopy, and particle diagnostics. We propose the simultaneous use of two dopants in the fuel (Ar and Kr) to act as spectroscopic tracers. We show that this introduces an effective spatial resolution in the plasma which permits an unambiguous observation of the B-field effects. Additionally, we present a plan for future experiments of this kind at LMJ.

10.
Phys Rev E ; 104(4-2): 045213, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34781551

RESUMO

We experimentally study the late-time, highly nonlinear regime of the Rayleigh-Taylor instability in a decelerating phase. A series of laser-driven experiments is performed on the LULI2000 laser, in which the initial Atwood number is varied by adjusting the decelerating medium density. The high-power laser is used in a direct drive configuration to put into motion a solid target. Its rear side, which initially possesses a two-dimensional machined sinusoidal perturbations, expands and decelerates into a foam leading to a Rayleigh-Taylor unstable situation. The interface position and morphology are measured by time-resolved x-ray radiography. We develop a simple Atwood-dependent model describing the motion of the decelerating interface, from which its acceleration history is obtained. The measured amplitude of the instability, or mixing zone width, is then compared with late-time acceleration-dependent Rayleigh-Taylor instability models. The shortcomings of this classical model, when applied to high-energy-density conditions, are shown. This calls into question their uses for systems, where a shock wave is present, such as those found in laboratory astrophysics or in inertial confinement fusion.

11.
Nat Commun ; 12(1): 2679, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976145

RESUMO

Turbulence is ubiquitous in the universe and in fluid dynamics. It influences a wide range of high energy density systems, from inertial confinement fusion to astrophysical-object evolution. Understanding this phenomenon is crucial, however, due to limitations in experimental and numerical methods in plasma systems, a complete description of the turbulent spectrum is still lacking. Here, we present the measurement of a turbulent spectrum down to micron scale in a laser-plasma experiment. We use an experimental platform, which couples a high power optical laser, an x-ray free-electron laser and a lithium fluoride crystal, to study the dynamics of a plasma flow with micrometric resolution (~1µm) over a large field of view (>1 mm2). After the evolution of a Rayleigh-Taylor unstable system, we obtain spectra, which are overall consistent with existing turbulent theory, but present unexpected features. This work paves the way towards a better understanding of numerous systems, as it allows the direct comparison of experimental results, theory and numerical simulations.

12.
Rev Sci Instrum ; 90(6): 063702, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31255030

RESUMO

The response of lithium fluoride (LiF) crystal detectors to monochromatic X-rays is measured in the multi-kilo-electron-volt range. This response, as a function of the X-ray dose, is independent of photon energy with no saturation level found. The response, as a function of the incident energy flux, is found to increase for photons of lower energy due to the differing attenuation lengths of X-ray photons within the crystal. Small differences are seen between different confocal microscopes used to scan the data, suggesting the need for absolute calibration. The spatial resolution of the LiF is also measured (1.19-1.36 µm) and is found to be independent of incident photon energy. Finally, a photometric study is performed in order to assess the feasibility of using these detectors at current X-ray free electron laser and laser facilities worldwide.

13.
Phys Rev E ; 100(2-1): 021201, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31574771

RESUMO

We describe a platform developed on the LULI2000 laser facility to investigate the evolution of Rayleigh-Taylor instability (RTI) in scaled conditions relevant to young supernova remnants (SNRs) up to 200 years. An RT unstable interface is imaged with a short-pulse laser-driven (PICO2000) x-ray source, providing an unprecedented simultaneous high spatial (24µm) and temporal (10 ps) resolution. This experiment provides relevant data to compare with astrophysical codes, as observational data on the development of RTI at the early stage of the SNR expansion are missing. A comparison is also performed with FLASH radiative magnetohydrodynamic simulations.

14.
Sci Rep ; 9(1): 8157, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31148567

RESUMO

Accretion processes play a crucial role in a wide variety of astrophysical systems. Of particular interest are magnetic cataclysmic variables, where, plasma flow is directed along the star's magnetic field lines onto its poles. A stationary shock is formed, several hundred kilometres above the stellar surface; a distance far too small to be resolved with today's telescopes. Here, we report the results of an analogous laboratory experiment which recreates this astrophysical system. The dynamics of the laboratory system are strongly influenced by the interplay of material, thermal, magnetic and radiative effects, allowing a steady shock to form at a constant distance from a stationary obstacle. Our results demonstrate that a significant amount of plasma is ejected in the lateral direction; a phenomenon that is under-estimated in typical magnetohydrodynamic simulations and often neglected in astrophysical models. This changes the properties of the post-shock region considerably and has important implications for many astrophysical studies.

15.
Rev Sci Instrum ; 89(10): 10G127, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399908

RESUMO

Talbot-Lau x-ray interferometers can map electron density gradients in High Energy Density (HED) samples. In the deflectometer configuration, it can provide refraction, attenuation, elemental composition, and scatter information from a single image. X-ray backlighters in Talbot-Lau deflectometry must meet specific requirements regarding source size and x-ray spectra, amongst others, to accurately diagnose a wide range of HED experiments. 8 keV sources produced in the high-power laser and pulsed power environment were evaluated as x-ray backlighters for Talbot-Lau x-ray deflectometry. In high-power laser experiments, K-shell emission was produced by irradiating copper targets (500 × 500 × 12.5 µm3 foils, 20 µm diameter wire, and >10 µm diameter spheres) with 30 J, 8-30 ps laser pulses and a 25 µm copper wire with a 60 J, 10 ps laser pulse. In the pulsed power environment, single (2 × 40 µm) and double (4 × 25 µm) copper x-pinches were driven at ∼1 kA/ns. Moiré fringe formation was demonstrated for all x-ray sources explored, and detector performance was evaluated for x-ray films, x-ray CCDs, and imaging plates in context of spatial resolution, x-ray emission, and fringe contrast.

16.
Sci Rep ; 8(1): 16407, 2018 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401885

RESUMO

High resolution X-ray imaging is crucial for many high energy density physics (HEDP) experiments. Recently developed techniques to improve resolution have, however, come at the cost of a decreased field of view. In this paper, an innovative experimental detector for X-ray imaging in the context of HEDP experiments with high spatial resolution, as well as a large field of view, is presented. The platform is based on coupling an X-ray backligther source with a Lithium Fluoride detector, characterized by its large dynamic range. A spatial resolution of 2 µm over a field of view greater than 2 mm2 is reported. The platform was benchmarked with both an X-ray free electron laser (XFEL) and an X-ray source produced by a short pulse laser. First, using a non-coherent short pulse laser-produced backlighter, reduced penumbra blurring, as a result of the large size of the X-ray source, is shown. Secondly, we demonstrate phase contrast imaging with a fully coherent monochromatic XFEL beam. Modeling of the absorption and phase contrast transmission of X-ray radiation passing through various targets is presented.

18.
Artigo em Inglês | MEDLINE | ID: mdl-26764839

RESUMO

Plastic materials (CH) doped with mid-Z elements are used as ablators in inertial confinement fusion (ICF) capsules and in their surrogates. Hugoniot equation of state (EOS) and electronic properties of CH doped with germanium (at 2.5% and 13% dopant fractions) are investigated experimentally up to 7 Mbar using velocity and reflectivity measurements of shock fronts on the GEKKO laser at Osaka University. Reflectivity and temperature measurements were updated using a quartz standard. Shocked quartz reflectivity was measured at 532 and 1064 nm. Theoretical investigation of shock pressure and reflectivity was then carried out by ab initio simulations using the quantum molecular dynamics (QMD) code abinit and compared with tabulated average atom EOS models. We find that shock states calculated by QMD are in better agreement with experimental data than EOS models because of a more accurate description of ionic structure. We finally discuss electronic properties by comparing reflectivity data to a semiconductor gap closure model and to QMD simulations.

19.
Rev Sci Instrum ; 86(4): 043502, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25933857

RESUMO

Ultra-intense lasers can nowadays routinely accelerate kiloampere ion beams. These unique sources of particle beams could impact many societal (e.g., proton-therapy or fuel recycling) and fundamental (e.g., neutron probing) domains. However, this requires overcoming the beam angular divergence at the source. This has been attempted, either with large-scale conventional setups or with compact plasma techniques that however have the restriction of short (<1 mm) focusing distances or a chromatic behavior. Here, we show that exploiting laser-triggered, long-lasting (>50 ps), thermoelectric multi-megagauss surface magnetic (B)-fields, compact capturing, and focusing of a diverging laser-driven multi-MeV ion beam can be achieved over a wide range of ion energies in the limit of a 5° acceptance angle.

20.
Science ; 346(6207): 325-8, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25324383

RESUMO

Although bipolar jets are seen emerging from a wide variety of astrophysical systems, the issue of their formation and morphology beyond their launching is still under study. Our scaled laboratory experiments, representative of young stellar object outflows, reveal that stable and narrow collimation of the entire flow can result from the presence of a poloidal magnetic field whose strength is consistent with observations. The laboratory plasma becomes focused with an interior cavity. This gives rise to a standing conical shock from which the jet emerges. Following simulations of the process at the full astrophysical scale, we conclude that it can also explain recently discovered x-ray emission features observed in low-density regions at the base of protostellar jets, such as the well-studied jet HH 154.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa