Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Cell Dev Biol ; 37: 369-389, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34196570

RESUMO

Wnt signaling has multiple functions beyond the transcriptional effects of ß-catenin stabilization. We review recent investigations that uncover new cell physiological effects through the regulation of Wnt receptor endocytosis, Wnt-induced stabilization of proteins (Wnt-STOP), macropinocytosis, increase in lysosomal activity, and metabolic changes. Many of these growth-promoting effects of canonical Wnt occur within minutes and are independent of new protein synthesis. A key element is the sequestration of glycogen synthase kinase 3 (GSK3) inside multivesicular bodies and lysosomes. Twenty percent of human proteins contain consecutive GSK3 phosphorylation motifs, which in the absence of Wnt can form phosphodegrons for polyubiquitination and proteasomal degradation. Wnt signaling by either the pharmacological inhibition of GSK3 or the loss of tumor-suppressor proteins, such as adenomatous polyposis coli (APC) and Axin1, increases lysosomal acidification, anabolic metabolites, and macropinocytosis, which is normally repressed by the GSK3-Axin1-APC destruction complex. The combination of these cell physiological effects drives cell growth.


Assuntos
Quinase 3 da Glicogênio Sintase , Via de Sinalização Wnt , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Lisossomos/metabolismo , Fosforilação , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia
2.
Kidney Int ; 104(5): 910-915, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37648154

RESUMO

Osteocytes are the most abundant type of bone cell and play crucial roles in bone health. Osteocytes sense mechanical stress and orchestrate osteoblasts and osteoclasts to maintain bone density and strength. Beyond this, osteocytes have also emerged as key regulators of organ crosstalk, and they function as endocrine organs via their roles in secreting factors that mediate signaling within their neighboring bone cells and in distant tissues. As such, osteocyte dysfunction has been associated with the bone abnormalities seen across a spectrum of chronic kidney disease. Specifically, dysregulated osteocyte morphology and signaling have been observed in the earliest stages of chronic kidney disease and have been suggested to contribute to kidney disease progression. More important, US Food and Drug Administration-approved inhibitors of osteocytic secreted proteins, such as fibroblast growth factor 23 and sclerostin, have been used to treat bone diseases. The present mini review highlights new research that links dysfunctional osteocytes to the pathogenesis of chronic kidney disease mineral and bone disorder.

3.
Proc Natl Acad Sci U S A ; 116(21): 10402-10411, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31061124

RESUMO

Canonical Wnt signaling is emerging as a major regulator of endocytosis. Wnt treatment markedly increased the endocytosis and degradation in lysosomes of BSA. In this study, we report that in addition to receptor-mediated endocytosis, Wnt also triggers the intake of large amounts of extracellular fluid by macropinocytosis, a nonreceptor-mediated actin-driven process. Macropinocytosis induction is rapid and independent of protein synthesis. In the presence of Wnt, large amounts of nutrient-rich packages such as proteins and glycoproteins were channeled into lysosomes after fusing with smaller receptor-mediated vesicles containing glycogen synthase kinase 3 (GSK3) and protein arginine ethyltransferase 1 (PRMT1), an enzyme required for canonical Wnt signaling. Addition of Wnt3a, as well as overexpression of Disheveled (Dvl), Frizzled (Fz8), or dominant-negative Axin induced endocytosis. Depletion of the tumor suppressors adenomatous polyposis coli (APC) or Axin dramatically increased macropinocytosis, defined by incorporation of the high molecular weight marker tetramethylrhodamine (TMR)-dextran and its blockage by the Na+/H+ exchanger ethylisopropyl amiloride (EIPA). Macropinocytosis was blocked by dominant-negative vacuolar protein sorting 4 (Vps4), indicating that the Wnt pathway is dependent on multivesicular body formation, a process called microautophagy. SW480 colorectal cancer cells displayed constitutive macropinocytosis and increased extracellular protein degradation in lysosomes, which were suppressed by restoring full-length APC. Accumulation of the transcriptional activator ß-catenin in the nucleus of SW480 cells was inhibited by methyltransferase inhibition, EIPA, or the diuretic amiloride. The results indicate that Wnt signaling switches metabolism toward nutrient acquisition by engulfment of extracellular fluids and suggest possible treatments for Wnt-driven cancer progression.


Assuntos
Lisossomos/metabolismo , Pinocitose/fisiologia , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Proteína Axina/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Endocitose/fisiologia , Quinase 3 da Glicogênio Sintase/metabolismo , Glicoproteínas/metabolismo , Células HeLa , Humanos , Camundongos , Células NIH 3T3 , Neoplasias/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Transativadores/metabolismo , beta Catenina/metabolismo
4.
Proc Natl Acad Sci U S A ; 116(8): 2987-2995, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30679275

RESUMO

The nutrient-sensing metabolite S-adenosylmethionine (SAM) controls one-carbon metabolism by donating methyl groups to biochemical building blocks, DNA, RNA, and protein. Our recent work uncovered a requirement for cytoplasmic arginine methylation during Wnt signaling through the activity of protein arginine methyltransferase 1 (PRMT1), which transfers one-carbon groups from SAM to many protein substrates. Here, we report that treatments that decrease levels of the universal methyl donor SAM were potent inhibitors of Wnt signaling and of Wnt-induced digestion of extracellular proteins in endolysosomes. Thus, arginine methylation provides the canonical Wnt pathway with metabolic sensing properties through SAM. The rapid accumulation of Wnt-induced endolysosomes within 30 minutes was inhibited by the depletion of methionine, an essential amino acid that serves as the direct substrate for SAM production. We also found that methionine is required for GSK3 sequestration into multivesicular bodies through microautophagy, an essential step in Wnt signaling activity. Methionine starvation greatly reduced Wnt-induced endolysosomal degradation of extracellular serum proteins. Similar results were observed by addition of nicotinamide (vitamin B3), which serves as a methyl group sink. Methotrexate, a pillar in the treatment of cancer since 1948, decreases SAM levels. We show here that methotrexate blocked Wnt-induced endocytic lysosomal activity and reduced canonical Wnt signaling. Importantly, the addition of SAM during methionine depletion or methotrexate treatment was sufficient to rescue endolysosomal function and Wnt signaling. Inhibiting the Wnt signaling pathway by decreasing one-carbon metabolism provides a platform for designing interventions in Wnt-driven disease.


Assuntos
Glicogênio Sintase Quinase 3 beta/genética , Metionina/metabolismo , Metotrexato/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteínas Repressoras/genética , Carbono/metabolismo , Endossomos/efeitos dos fármacos , Endossomos/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Metionina/análogos & derivados , Metionina/farmacologia , Metotrexato/análogos & derivados , Metotrexato/farmacologia , Metilação/efeitos dos fármacos , Niacinamida/farmacologia , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , S-Adenosilmetionina/metabolismo , Via de Sinalização Wnt/efeitos dos fármacos
5.
Proc Natl Acad Sci U S A ; 115(23): E5317-E5325, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29773710

RESUMO

Arginine methylation has emerged as a widespread and reversible protein modification with the potential to regulate a multitude of cellular processes, but its function is poorly understood. Endolysosomes play an important role in Wnt signaling, in which glycogen synthase kinase 3 (GSK3) becomes sequestered inside multivesicular bodies (MVBs) by the process known as microautophagy, causing the stabilization of many proteins. Up to 20% of cellular proteins contain three or more consecutive putative GSK3 sites, and of these 33% also contain methylarginine (meArg) modifications. Intriguingly, a cytoskeletal protein was previously known to have meArg modifications that enhanced subsequent phosphorylations by GSK3. Here, we report the unexpected finding that protein arginine methyltransferase 1 (PRMT1) is required for canonical Wnt signaling. Treatment of cultured cells for 5-30 min with Wnt3a induced a large increase in total endocytic vesicles which were also positive for asymmetric dimethylarginine modifications. Protease protection studies, both biochemical and in situ in cultured cells, showed that many meArg-modified cytosolic proteins became rapidly translocated into MVBs together with GSK3 and Lys48-polyubiquitinated proteins by ESCRT-driven microautophagy. In the case of the transcription factor Smad4, we showed that a unique arginine methylation site was required for GSK3 phosphorylation and Wnt regulation. The enzyme PRMT1 was found to be essential for Wnt-stimulated arginine methylation, GSK3 sequestration, and canonical Wnt signaling. The results reveal a cell biological role for PRMT1 arginine methylation at the crossroads of growth factor signaling, protein phosphorylation, membrane trafficking, cytosolic proteolysis, and Wnt-regulated microautophagy.


Assuntos
Arginina/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Repressoras/metabolismo , Via de Sinalização Wnt/fisiologia , Linhagem Celular , Endocitose/fisiologia , Endossomos/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Lisossomos/metabolismo , Metilação , Corpos Multivesiculares/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Transporte Proteico , Proteína-Arginina N-Metiltransferases/fisiologia , Proteínas Repressoras/fisiologia , Proteína Smad4 , Ubiquitinação , Proteínas Wnt/metabolismo
6.
Exp Dermatol ; 26(5): 423-430, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-27892606

RESUMO

SVEP1 is a recently identified multidomain cell adhesion protein, homologous to the mouse polydom protein, which has been shown to mediate cell-cell adhesion in an integrin-dependent manner in osteogenic cells. In this study, we characterized SVEP1 function in the epidermis. SVEP1 was found by qRT-PCR to be ubiquitously expressed in human tissues, including the skin. Confocal microscopy revealed that SVEP1 is normally mostly expressed in the cytoplasm of basal and suprabasal epidermal cells. Downregulation of SVEP1 expression in primary keratinocytes resulted in decreased expression of major epidermal differentiation markers. Similarly, SVEP1 downregulation was associated with disturbed differentiation and marked epidermal acanthosis in three-dimensional skin equivalents. In contrast, the dispase assay failed to demonstrate significant differences in adhesion between keratinocytes expressing normal vs low levels of SVEP1. Homozygous Svep1 knockout mice were embryonic lethal. Thus, to assess the importance of SVEP1 for normal skin homoeostasis in vivo, we downregulated SVEP1 in zebrafish embryos with a Svep1-specific splice morpholino. Scanning electron microscopy revealed a rugged epidermis with perturbed microridge formation in the centre of the keratinocytes of morphant larvae. Transmission electron microscopy analysis demonstrated abnormal epidermal cell-cell adhesion with disadhesion between cells in Svep1-deficient morphant larvae compared to controls. In summary, our results indicate that SVEP1 plays a critical role during epidermal differentiation.


Assuntos
Moléculas de Adesão Celular/metabolismo , Epiderme/metabolismo , Epiderme/ultraestrutura , Queratinócitos/metabolismo , Animais , Adesão Celular , Diferenciação Celular , Expressão Gênica , Humanos , Camundongos Knockout , Cultura Primária de Células , Peixe-Zebra
7.
BMC Med Res Methodol ; 17(1): 161, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29207955

RESUMO

BACKGROUND: As implementation science advances, the number of interventions to promote the translation of evidence into healthcare, health systems, or health policy is growing. Accordingly, classification schemes for these knowledge translation (KT) interventions have emerged. A recent scoping review identified 51 classification schemes of KT interventions to integrate evidence into healthcare practice; however, the review did not evaluate the quality of the classification schemes or provide detailed information to assist researchers in selecting a scheme for their context and purpose. This study aimed to further examine and assess the quality of these classification schemes of KT interventions, and provide information to aid researchers when selecting a classification scheme. METHODS: We abstracted the following information from each of the original 51 classification scheme articles: authors' objectives; purpose of the scheme and field of application; socioecologic level (individual, organizational, community, system); adaptability (broad versus specific); target group (patients, providers, policy-makers), intent (policy, education, practice), and purpose (dissemination versus implementation). Two reviewers independently evaluated the methodological quality of the development of each classification scheme using an adapted version of the AGREE II tool. Based on these assessments, two independent reviewers reached consensus about whether to recommend each scheme for researcher use, or not. RESULTS: Of the 51 original classification schemes, we excluded seven that were not specific classification schemes, not accessible or duplicates. Of the remaining 44 classification schemes, nine were not recommended. Of the 35 recommended classification schemes, ten focused on behaviour change and six focused on population health. Many schemes (n = 29) addressed practice considerations. Fewer schemes addressed educational or policy objectives. Twenty-five classification schemes had broad applicability, six were specific, and four had elements of both. Twenty-three schemes targeted health providers, nine targeted both patients and providers and one targeted policy-makers. Most classification schemes were intended for implementation rather than dissemination. CONCLUSIONS: Thirty-five classification schemes of KT interventions were developed and reported with sufficient rigour to be recommended for use by researchers interested in KT in healthcare. Our additional categorization and quality analysis will aid in selecting suitable classification schemes for research initiatives in the field of implementation science.


Assuntos
Pesquisa Translacional Biomédica/classificação , Atenção à Saúde , Humanos , Pesquisadores
8.
BMC Health Serv Res ; 17(1): 686, 2017 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-28962637

RESUMO

BACKGROUND: An emerging field of knowledge translation (KT) research has begun to focus on health consumers, particularly in child health. KT tools provide health consumers with research knowledge to inform health decision-making and may foster 'effective consumers'. Thus, the purpose of this scoping review was to describe the state of the field of previously published effectiveness research on child health-related KT tools for parents/caregivers to understand the evidence-base, identify gaps, and guide future research efforts. METHODS: A health research librarian developed and implemented search strategies in 8 databases. One reviewer conducted screening using pre-determined criteria. A second reviewer verified 10% of screening decisions. Data extraction was performed by one reviewer. A descriptive analysis was conducted and included patient-important outcome classification, WIDER Recommendation checklist, and methodological quality assessment. RESULTS: Seven thousand nine hundred fifty two independent titles and abstracts were reviewed, 2267 full-text studies were retrieved and reviewed, and 18 articles were included in the final data set. A variety of KT tools, including single- (n = 10) and multi-component tools (n = 10), were evaluated spanning acute (n = 4), chronic (n = 5) and public/population health (n = 9) child health topics. Study designs included: cross-sectional (n = 4), before-after (n = 1), controlled before-after (n = 2), cohort (n = 1), and RCTs (n = 10). The KT tools were evaluated via single primary outcome category (n = 11) and multiple primary outcome categories (n = 7). Two studies demonstrated significant positive effects on primary outcome categories; the remaining studies demonstrated mixed effects (n = 9) and no effect (n = 3). Overall, methodological quality was poor; studies lacked a priori protocols (n = 18) and sample size calculations (n = 13). Overall, intervention reporting was also poor; KT tools lacked description of theoretical underpinnings (n = 14), end-user engagement (n = 13), and preliminary research (n = 9) to inform the current effectiveness evaluation. CONCLUSIONS: A number of child health-related knowledge translation tools have been developed for parents/caregivers. However, numerous outcomes were used to assess impact and there is limited evidence demonstrating their effectiveness. Moreover, the methodological rigor and reporting of effectiveness studies is limited. Careful tool development involving end-users and preliminary research, including usability testing and mixed methods, prior to large-scale studies may be important to advance the science of KT for health consumers.


Assuntos
Saúde da Criança , Educação em Saúde/métodos , Conhecimentos, Atitudes e Prática em Saúde , Pais/educação , Criança , Comunicação , Estudos Transversais , Tomada de Decisões , Medicina Baseada em Evidências , Humanos , Pais/psicologia , Projetos de Pesquisa
9.
J Pediatr Nurs ; 31(3): 235-54, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26786910

RESUMO

UNLABELLED: Strategies to assist evidence-based decision-making for healthcare professionals are crucial to ensure high quality patient care and outcomes. The goal of this systematic review was to identify and synthesize the evidence on knowledge translation interventions aimed at putting explicit research evidence into child health practice. METHODS: A comprehensive search of thirteen electronic databases was conducted, restricted by date (1985-2011) and language (English). Articles were included if: 1) studies were randomized controlled trials (RCT), controlled clinical trials (CCT), or controlled before-and-after (CBA) studies; 2) target population was child health professionals; 3) interventions implemented research in child health practice; and 4) outcomes were measured at the professional/process, patient, or economic level. Two reviewers independently extracted data and assessed methodological quality. Study data were aggregated and analyzed using evidence tables. RESULTS: Twenty-one studies (13 RCT, 2 CCT, 6 CBA) were included. The studies employed single (n=9) and multiple interventions (n=12). The methodological quality of the included studies was largely moderate (n=8) or weak (n=11). Of the studies with moderate to strong methodological quality ratings, three demonstrated consistent, positive effect(s) on the primary outcome(s); effective knowledge translation interventions were two single, non-educational interventions and one multiple, educational intervention. CONCLUSIONS: This multidisciplinary systematic review in child health setting identified effective knowledge translation strategies assessed by the most rigorous research designs. Given the overall poor quality of the research literature, specific recommendations were made to improve knowledge translation efforts in child health.


Assuntos
Saúde da Criança , Pessoal de Saúde/educação , Promoção da Saúde , Pesquisa Translacional Biomédica/organização & administração , Canadá , Criança , Feminino , Necessidades e Demandas de Serviços de Saúde , Humanos , Disseminação de Informação , Masculino , Avaliação de Resultados em Cuidados de Saúde , Pediatria , Ensaios Clínicos Controlados Aleatórios como Assunto
10.
J Minim Invasive Gynecol ; 20(6): 803-10, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24183272

RESUMO

STUDY OBJECTIVE: To evaluate the accuracy of 3-dimensional transvaginal sonography (3D TVS) in the diagnosis of adenomyosis by correlating adenomyosis-induced morphologic alterations in the myometrium and the junctional zone (JZ) with histopathologic features of targeted biopsy specimens of the uterus. DESIGN: Prospective study (Canadian Task force classification II-2). SETTING: Private practice associated with a university program. PATIENTS: Symptomatic premenopausal women scheduled to undergo hysterectomy because of benign conditions. INTERVENTIONS: Patients underwent preoperative 3D TVS of the uterus to evaluate alterations to the JZ, to measure the smallest (JZ(min)) and largest (JZ(max)) JZ thickness, and to assess for the presence of myometrial heterogeneous and cystic areas, hyperechoic striations, and asymmetry of the myometrial wall. Localization and position of the lesions in the myometrial wall were accurately recorded. Results of the sonographic features were correlated with the histopathologic findings of the ultrasound-based targeted biopsy specimens of the uterus. MEASUREMENTS AND MAIN RESULTS: The study included 54 symptomatic premenopausal women with a mean age of 42.1 years. Of these, 12 had previously undergone endometrial ablation and 10 were receiving medical therapy, and these patients were considered separately for the statistical analysis. The prevalence of adenomyosis at histology was 66.6% (36/54). Of 32 patients who had received no previous treatment, 26 had adenomyosis on the targeted biopsy specimens of the myometrium. 3D TVS features of adenomyosis with the best specificity (83%) and positive predictive values were JZ(max) ≥8 mm, myometrial asymmetry, and hypoechoic striation. When we considered the presence of at least 2 of the described ultrasound features for the diagnosis of adenomyosis, accuracy was 90% (sensitivity, 92%; specificity, 83%; positive predictive value, 99%; and negative predictive value, 71%). Diagnostic accuracy was decreased to 50% in patients who had previously undergone endometrial ablation, and to 60% in patients receiving medical therapy. CONCLUSION: 3D TVS demonstrates high diagnostic accuracy in detection of site and position of adenomyosis in the uterine walls. Endometrial ablation and medical therapy alter the appearance of the JZ, compromising the accuracy of 3D US in enabling the diagnosis of adenomyosis.


Assuntos
Adenomiose/diagnóstico , Histerectomia , Útero/diagnóstico por imagem , Adenomiose/diagnóstico por imagem , Adenomiose/patologia , Adenomiose/cirurgia , Adulto , Biópsia , Técnicas de Ablação Endometrial , Feminino , Humanos , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Sensibilidade e Especificidade , Ultrassonografia , Útero/patologia , Útero/cirurgia
11.
Cancers (Basel) ; 16(1)2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38201444

RESUMO

Glycolysis is the central metabolic pathway across all kingdoms of life. Intensive research efforts have been devoted to understanding the tightly orchestrated processes of converting glucose into energy in health and disease. Our review highlights the advances in knowledge of how metabolic and gene networks are integrated through the precise spatiotemporal compartmentalization of rate-limiting enzymes. We provide an overview of technically innovative approaches that have been applied to study phosphofructokinase-1 (PFK1), which represents the fate-determining step of oxidative glucose metabolism. Specifically, we discuss fast-acting chemical biology and optogenetic tools that have delineated new links between metabolite fluxes and transcriptional reprogramming, which operate together to enact tissue-specific processes. Finally, we discuss how recent paradigm-shifting insights into the fundamental basis of glycolytic regulatory control have shed light on the mechanisms of tumorigenesis and could provide insight into new therapeutic vulnerabilities in cancer.

12.
Nutrients ; 15(19)2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37836411

RESUMO

The pathophysiology of chronic kidney disease-mineral and bone disorder (CKD-MBD) is not well understood. Specific factors secreted by osteocytes are elevated in the serum of adults and pediatric patients with CKD-MBD, including FGF-23 and sclerostin, a known inhibitor of the Wnt signaling pathway. The molecular mechanisms that promote bone disease during the progression of CKD are incompletely understood. In this study, we performed a cross-sectional analysis of 87 pediatric patients with pre-dialysis CKD and post-dialysis (CKD 5D). We assessed the associations between serum and bone sclerostin levels and biomarkers of bone turnover and bone histomorphometry. We report that serum sclerostin levels were elevated in both early and late CKD. Higher circulating and bone sclerostin levels were associated with histomorphometric parameters of bone turnover and mineralization. Immunofluorescence analyses of bone biopsies evaluated osteocyte staining of antibodies towards the canonical Wnt target, ß-catenin, in the phosphorylated (inhibited) or unphosphorylated (active) forms. Bone sclerostin was found to be colocalized with phosphorylated ß-catenin, which suggests that Wnt signaling was inhibited. In patients with low serum sclerostin levels, increased unphosphorylated "active" ß-catenin staining was observed in osteocytes. These data provide new mechanistic insight into the pathogenesis of CKD-MBD and suggest that sclerostin may offer a potential biomarker or therapeutic target in pediatric renal osteodystrophy.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Insuficiência Renal Crônica , Adulto , Humanos , Criança , Distúrbio Mineral e Ósseo na Doença Renal Crônica/metabolismo , Osteócitos/metabolismo , Osteócitos/patologia , Via de Sinalização Wnt , beta Catenina/metabolismo , Estudos Transversais , Biomarcadores , Insuficiência Renal Crônica/complicações
13.
Sci Adv ; 9(36): eadi2232, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37682999

RESUMO

Vitamin B6 is a vital micronutrient across cell types and tissues, and dysregulated B6 levels contribute to human disease. Despite its importance, how B6 vitamer levels are regulated is not well understood. Here, we provide evidence that B6 dynamics are rapidly tuned by precise compartmentation of pyridoxal kinase (PDXK), the rate-limiting B6 enzyme. We show that canonical Wnt rapidly led to the accumulation of inactive B6 by shunting cytosolic PDXK into lysosomes. PDXK was modified with methyl-arginine Degron (MrDegron), a protein tag for lysosomes, which enabled delivery via microautophagy. Hyperactive lysosomes resulted in the continuous degradation of PDXK and B6 deficiency that promoted proliferation in Wnt-driven colorectal cancer (CRC) cells. Pharmacological or genetic disruption of the coordinated MrDegron proteolytic pathway was sufficient to reduce CRC survival in cells and organoid models. In sum, this work contributes to the repertoire of micronutrient-regulated processes that enable cancer cell growth and provides insight into the functional impact of B6 deficiencies for survival.


Assuntos
Peptídeo Hidrolases , Vitamina B 6 , Humanos , Proteólise , Micronutrientes , Vitaminas
14.
Front Endocrinol (Lausanne) ; 13: 887037, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35600583

RESUMO

A fundamental question in cell biology underlies how nutrients are regenerated to maintain and renew tissues. Physiologically, the canonical Wnt signaling is a vital pathway for cell growth, tissue remodeling, and organ formation; pathologically, Wnt signaling contributes to the development of myriad human diseases such as cancer. Despite being the focus of intense research, how Wnt intersects with the metabolic networks to promote tissue growth and remodeling has remained mysterious. Our understanding of metabolism has been revolutionized by technological advances in the fields of chemical biology, metabolomics, and live microscopy that have now made it possible to visualize and manipulate metabolism in living cells and tissues. The application of these toolsets to innovative model systems have propelled the Wnt field into new realms at the forefront answering the most pressing paradigms of cell metabolism in health and disease states. Elucidating the basis of Wnt signaling and metabolism in a cell-type and tissue-specific manner will provide a powerful base of knowledge for both basic biomedical fields and clinician scientists, and has the promise to generate new, transformative therapies in disease and even processes of aging.


Assuntos
Via de Sinalização Wnt , Humanos , Via de Sinalização Wnt/fisiologia
15.
Metabolites ; 12(10)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36295863

RESUMO

Vitamin B micronutrients are essential regulators of one carbon metabolism that ensures human health. Vitamin B9, or folate, lies at the heart of the folate cycle and converges with the methionine cycle to complete the one carbon pathway. Additionally, vitamin B6 contributes by orchestrating the flux of one carbon cycling. Dysregulation of vitamin B contributes to altered biochemical signaling that manifests in a spectrum of human diseases. This review presents an analysis of the past, present, and future work, highlighting the interplay between folate and vitamin B6 in one carbon metabolism. Emerging insights include advances in metabolomic-based mass spectrometry and the use of live-cell metabolic labeling. Cancer is used as a focal point to dissect vitamin crosstalk and highlight new insights into the roles of folate and vitamin B6 in metabolic control. This collection of vitamin-based research detailing the trends of one carbon metabolism in human disease exemplifies how the future of personalized medicine could unfold using this new base of knowledge and ultimately provide next-generation therapeutics.

16.
Biochemistry ; 50(12): 2371-80, 2011 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-21323370

RESUMO

The local and global dynamics of the chemokine receptor CXCR1 are characterized using a combination of solution NMR and solid-state NMR experiments. In isotropic bicelles (q = 0.1), only 13% of the expected number of backbone amide resonances is observed in (1)H/(15)N HSQC solution NMR spectra of uniformly (15)N-labeled samples; extensive deuteration and the use of TROSY made little difference in the 800 MHz spectra. The limited number of observed amide signals is ascribed to mobile backbone sites and assigned to specific residues in the protein; 19 of the signals are from residues at the N-terminus and 25 from residues at the C-terminus. The solution NMR spectra display no evidence of local backbone motions from residues in the transmembrane helices or interhelical loops of CXCR1. This finding is reinforced by comparisons of solid-state NMR spectra of both magnetically aligned and unoriented bilayers containing either full-length or doubly N- and C-terminal truncated CXCR1 constructs. CXCR1 undergoes rapid rotational diffusion about the normal of liquid crystalline phospholipid bilayers; reductions in the frequency span and a change to axial symmetry are observed for both carbonyl carbon and amide nitrogen chemical shift powder patterns of unoriented samples containing (13)C- and (15)N-labeled CXCR1. In contrast, when the phospholipids are in the gel phase, CXCR1 does not undergo rapid global reorientation on the 10(4) Hz time scale defined by the carbonyl carbon and amide nitrogen chemical shift powder patterns.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Receptores de Interleucina-8A/química , Receptores de Interleucina-8A/metabolismo , Sequência de Aminoácidos , Difusão , Humanos , Bicamadas Lipídicas/metabolismo , Magnetismo , Micelas , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Rotação
17.
JBMR Plus ; 5(4): e10464, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33869988

RESUMO

Autosomal dominant polycystic kidney disease (ADPKD) is the most common inherited cause of chronic kidney disease (CKD) and leads to a specific type of bone disease. The primary cilium is a major cellular organelle implicated in the pathophysiology of ADPKD caused by mutations in polycystin-1 (PKD1) and polycystin-2 (PKD2). In this study, for the first time, cilia were characterized in primary preosteoblasts isolated from patients with ADPKD. All patients with ADPKD had low bone turnover and primary osteoblasts were also obtained from patients with non-ADPKD CKD with low bone turnover. Image-based immunofluorescence assays analyzed cilia using standard markers, pericentrin, and acetylated-α-tubulin, where cilia induction and elongation were chosen as relevant endpoints for these initial investigations. Osteoblastic activity was examined by measuring alkaline phosphatase levels and mineralized matrix deposition rates. It was found that primary cilia can be visualized in patient-derived osteoblasts and respond to elongation treatments. Compared with control cells, ADPKD osteoblasts displayed abnormal cilia elongation that was significantly more responsive in cells with PKD2 nontruncating mutations and PKD1 mutations. In contrast, non-ADPKD CKD osteoblasts were unresponsive and had shorter cilia. Finally, ADPKD osteoblasts showed increased rates of mineralized matrix deposition compared with non-ADPKD CKD. This work represents the first study of cilia in primary human-derived osteoblasts from patients with CKD and patients with ADPKD who have normal kidney function, offering new insights as bone disease phenotypes are not well recapitulated in animal models. These data support a model whereby altered cilia occurs in PKD-mutated osteoblasts, and that ADPKD-related defects in bone cell activity and mineralization are distinct from adynamic bone disease from patients with non-ADPKD CKD. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.

18.
Cell Rep ; 32(4): 107973, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32726636

RESUMO

Canonical Wnt signaling is emerging as a major regulator of endocytosis. Here, we report that Wnt-induced macropinocytosis is regulated through glycogen synthase kinase 3 (GSK3) and the ß-catenin destruction complex. We find that mutation of Axin1, a tumor suppressor and component of the destruction complex, results in the activation of macropinocytosis. Surprisingly, inhibition of GSK3 by lithium chloride (LiCl), CHIR99021, or dominant-negative GSK3 triggers macropinocytosis. GSK3 inhibition causes a rapid increase in acidic endolysosomes that is independent of new protein synthesis. GSK3 inhibition or Axin1 mutation increases lysosomal activity, which can be followed with tracers of active cathepsin D, ß-glucosidase, and ovalbumin degradation. Microinjection of LiCl into the blastula cavity of Xenopus embryos causes a striking increase in dextran macropinocytosis. The effects of GSK3 inhibition on protein degradation in endolysosomes are blocked by the macropinocytosis inhibitors EIPA or IPA-3, suggesting that increases in membrane trafficking drive lysosomal activity.


Assuntos
Proteína Axina/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Pinocitose/fisiologia , Proteínas de Xenopus/metabolismo , Animais , Linhagem Celular Tumoral , Endocitose/fisiologia , Endossomos/metabolismo , Quinase 3 da Glicogênio Sintase/fisiologia , Lisossomos/metabolismo , Fosforilação , Proteínas Wnt/metabolismo , Via de Sinalização Wnt/fisiologia , Proteínas de Xenopus/fisiologia , Xenopus laevis , beta Catenina/metabolismo
19.
Sci Rep ; 10(1): 21555, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33299006

RESUMO

The canonical Wnt pathway serves as a hub connecting diverse cellular processes, including ß-catenin signaling, differentiation, growth, protein stability, macropinocytosis, and nutrient acquisition in lysosomes. We have proposed that sequestration of ß-catenin destruction complex components in multivesicular bodies (MVBs) is required for sustained canonical Wnt signaling. In this study, we investigated the events that follow activation of the canonical Wnt receptor Lrp6 using an APEX2-mediated proximity labeling approach. The Wnt co-receptor Lrp6 was fused to APEX2 and used to biotinylate targets that are recruited near the receptor during Wnt signaling at different time periods. Lrp6 proximity targets were identified by mass spectrometry, and revealed that many endosomal proteins interacted with Lrp6 within 5 min of Wnt3a treatment. Interestingly, we found that Trk-fused gene (TFG), previously known to regulate the cell secretory pathway and to be rearranged in thyroid and lung cancers, was strongly enriched in the proximity of Lrp6. TFG depletion with siRNA, or knock-out with CRISPR/Cas9, significantly reduced Wnt/ß-catenin signaling in cell culture. In vivo, studies in the Xenopus system showed that TFG is required for endogenous Wnt-dependent embryonic patterning. The results suggest that the multivesicular endosomal machinery and the novel player TFG have important roles in Wnt signaling.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Endonucleases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Enzimas Multifuncionais/metabolismo , Receptor trkA/metabolismo , Via de Sinalização Wnt/fisiologia , Fusão Gênica , Células HEK293 , Humanos
20.
Pilot Feasibility Stud ; 4: 131, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30123522

RESUMO

BACKGROUND: Pediatric acute gastroenteritis (AGE) is a common childhood illness with substantial health, family, and system impacts. Connecting parents to evidence-based patient education is key to effective decision-making and therapeutic management of AGE. Digital knowledge translation (KT) tools offer a promising approach to communicate complex health information to parents; therefore, we developed a whiteboard animation video for parents about AGE. To optimize future effectiveness evaluation of this video, the purpose of this pilot study is to assess feasibility of effectiveness outcomes and specific trial methods in four key trial domains. METHODS: A single-site, parallel-arm, pilot randomized trial will be conducted. The trial will employ quantitative and qualitative methods to evaluate feasibility objectives in key scientific, process, management, and resource domains. Parents seeking care for a child with AGE in the emergency department (ED) over a 6-month period will be randomized to receive the whiteboard animation video or a sham control video. Quantitative data will be collected electronically in the ED and at home (4-10 days post-ED visit). Qualitative data will be collected via semi-structured interviews with experimental condition participants after quantitative data collection. Data will be collected to perform a sample size calculation for a full-scale trial. Scientific outcomes will include parental knowledge, decision regret, and health utilization, and estimation for these outcomes will use confidence intervals (CI) of different widths to illustrate strength of preliminary evidence. CIs will be presented alongside minimum clinically important differences (MCIDs) calculated using two methods: (1) data driven and (2) patient perspective. Descriptive statistics will be calculated to describe process, management, and resource domain outcomes. Qualitative thematic analysis will be conducted to describe additional process, management, and resource outcomes in the experimental group. Analyses will be performed using intention-to-treat. DISCUSSION: This pilot randomized trial will inform the design and conduct of a full-scale, effectiveness trial by gathering key data in four domains: scientific, process, management, and resource. These results will impact the emerging field of KT efforts targeting health consumers and advance the science on the best mode of patient education for acute childhood illnesses. TRIAL REGISTRATION: clinicaltrails.gov registration number NCT03234777. Registered 31 July 2017.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa