Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Med Microbiol ; 307(4-5): 241-248, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28412040

RESUMO

The hypothetical role played by the intracellular formation of reactive oxygen species (ROS) in the fungicidal action carried out by Amphotericin B (AmB) and Micafungin (MF) was examined in Candida albicans, which remains the most prevalent fungal pathogen. The clinical MICs for MF and AmB were 0.016 and 0.12µg/ml, respectively. Whereas AmB (0.5-1.0×MIC) induced a marked production of intracellular ROS accompanied by a high degree of cell killing in the C. albicans SC5314 strain, the fungicidal effect of MF was still operative, but ROS generation was slight. Preincubation with thiourea suppressed the formation of ROS and caused a marked increase in cell viability, regardless of the antifungal used. Simultaneous measurement of several well established antioxidant enzymes (catalase, glutathione reductase and superoxide dismutase) revealed strong AmB-induced activation of the three enzymatic activities, whereas MF only had a weak stimulating effect. Likewise, AmB but not MF promoted a conspicuous rise in the mitochondrial membrane potential together with the intracellular synthesis of trehalose, the non-reducing disaccharide which acts as a specific protector against oxidative stress in C. albicans. Optical and electronic microscopy analysis revealed a significant damage to cell integrity and structural alterations caused by both antifungals. Taken together, our results strongly suggest that the induction of an internal oxidative stress in C. albicans through the accumulation of ROS is a preferential contributory factor to the antifungal action of a widely used polyene (AmB) but not of MF (echinocandin).


Assuntos
Anfotericina B/farmacologia , Candida albicans/efeitos dos fármacos , Equinocandinas/farmacologia , Lipopeptídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Antifúngicos/farmacologia , Antioxidantes/farmacologia , Candida albicans/metabolismo , Micafungina , Testes de Sensibilidade Microbiana , Estresse Oxidativo/efeitos dos fármacos
2.
Microbiol Res ; 203: 10-18, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28754203

RESUMO

Arsenic is a toxic metalloid widespread in nature. Recently, it has been demonstrated a main role of the transcription factor Pho4 in the acquisition of tolerance to arsenic-derived compounds, arsenite and arsenate in Candida albicans. Here, the effect of these compounds on this pathogenic yeast has been analyzed. In wild type cells, both arsenite and arsenate induced a marked increase in the endogenous production of Reactive Oxygen Species (ROS), together with the accumulation of intracellular trehalose and the activation of catalase, suggesting their role as generators of oxidative stress in this yeast. However, a pho4 null mutant showed a minor increase of intracellular ROS and a different kinetics of catalase activation upon exposure to arsenite and arsenate. Interestingly, the enzymatic activity of glutathione reductase and superoxide dismutase were exclusively triggered by arsenite but not by arsenate. pho4 mutant cells were also found to be sensitive to azide but significantly resistant to arsenate through a process dependent on an active electron transport chain and the alternative oxidase system. Therefore, arsenic-derived compounds induce a strong antioxidant response in C.albicans via different mechanisms.


Assuntos
Antioxidantes/farmacologia , Arseniatos/farmacologia , Arsenitos/farmacologia , Candida albicans/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Azidas/farmacologia , Candida albicans/genética , Catalase/metabolismo , Sistema Livre de Células , Proteínas de Ligação a DNA/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/fisiologia , Ativação Enzimática/fisiologia , Glutationa Redutase/metabolismo , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Proteínas Mitocondriais/fisiologia , Oxirredução/efeitos dos fármacos , Oxirredutases/fisiologia , Proteínas de Plantas/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo , Trealose/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa