Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Cell Mol Med ; 28(8): e18196, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38534093

RESUMO

Liver cirrhosis is a silent disease in humans and is experimentally induced by many drugs and toxins as thioacetamide (TAA) in particular, which is the typical model for experimental induction of hepatic fibrosis. Thus, the objective of the present study was to elucidate the possible protective effects of lactéol® forte (LF) and quercetin dihydrate (QD) against TAA-induced hepatic damage in male albino rats. Induction of hepatotoxicity was performed by TAA injection (200 mg/kg I/P, twice/ week) in rats. LF (1 × 109 CFU/rat 5 times/week) and QD (50 mg/kg 5 times/week) treated groups were administered concurrently with TAA injection (200 mg/kg I/P, twice/ week). The experimental treatments were conducted for 12 weeks. Hepatotoxicity was evaluated biochemically by measuring alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transferase (GGT) in the serum and histopathologically with the scoring of histopathological changes besides histochemical assessment of collagen by Masson's trichrome and immunohistochemical analysis for α-smooth muscle actin (α-SMA), Ki67 and caspase-3 expression in liver sections. Our results indicated that LF and QD attenuated some biochemical changes and histochemical markers in TAA-mediated hepatotoxicity in rats by amelioration of biochemical markers and collagen, α-SMA, Ki67 and caspase3 Immunoexpression. Additionally, LF and QD supplementation downregulated the proliferative, necrotic, fibroblastic changes, eosinophilic intranuclear inclusions, hyaline globules and Mallory-like bodies that were detected histopathologically in the TAA group. In conclusion, LF showed better hepatic protection than QD against TAA-induced hepatotoxicity in rats by inhibiting inflammatory reactions with the improvement of some serum hepatic transaminases, histopathological picture and immunohistochemical markers.


Assuntos
Carbonato de Cálcio , Doença Hepática Induzida por Substâncias e Drogas , Lactose , Quercetina , Humanos , Ratos , Masculino , Animais , Quercetina/farmacologia , Tioacetamida/toxicidade , Antígeno Ki-67/metabolismo , Cirrose Hepática/metabolismo , Fígado/metabolismo , Flavonoides/farmacologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Colágeno/metabolismo , Estresse Oxidativo , Combinação de Medicamentos
2.
J Cell Mol Med ; 28(11): e18412, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842132

RESUMO

Cyclin-dependent kinase 5 (Cdk5) is a protein expressed in postmitotic neurons in the central nervous system (CNS). Cdk5 is activated by p35 and p39 which are neuron regulatory subunits. Cdk5/p35 complex is activated by calpain protease to form Cdk5/p35 which has a neuroprotective effect by regulating the synaptic plasticity and memory functions. However, exaggerated Cdk5 is implicated in different types of neurodegenerative diseases including Parkinson disease (PD). Therefore, modulation of Cdk5 signalling may mitigate PD neuropathology. Therefore, the aim of the present review was to discuss the critical role of Cdk5 in the pathogenesis of PD, and how Cdk5 inhibitors are effectual in the management of PD. In conclusion, overactivated Cdk5 is involved the development of neurodegeneration, and Cdk5/calpain inhibitors such as statins, metformin, fenofibrates and rosiglitazone can attenuate the progression of PD neuropathology.


Assuntos
Quinase 5 Dependente de Ciclina , Doença de Parkinson , Quinase 5 Dependente de Ciclina/metabolismo , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Animais , Calpaína/metabolismo , Calpaína/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
3.
J Cell Mol Med ; 28(12): e18495, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38899551

RESUMO

Parkinson disease (PD) is one of the most common neurodegenerative diseases of the brain. Of note, brain renin-angiotensin system (RAS) is intricate in the PD neuropathology through modulation of oxidative stress, mitochondrial dysfunction and neuroinflammation. Therefore, modulation of brain RAS by angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEIs) may be effective in reducing the risk and PD neuropathology. It has been shown that all components including the peptides and enzymes of the RAS are present in the different brain areas. Brain RAS plays a critical role in the regulation of memory and cognitive function, and in the controlling of central blood pressure. However, exaggerated brain RAS is implicated in the pathogenesis of different neurodegenerative diseases including PD. Two well-known pathways of brain RAS are recognized including; the classical pathway which is mainly mediated by AngII/AT1R has detrimental effects. Conversely, the non-classical pathway which is mostly mediated by ACE2/Ang1-7/MASR and AngII/AT2R has beneficial effects against PD neuropathology. Exaggerated brain RAS affects the viability of dopaminergic neurons. However, the fundamental mechanism of brain RAS in PD neuropathology was not fully elucidated. Consequently, the purpose of this review is to disclose the mechanistic role of RAS in in the pathogenesis of PD. In addition, we try to revise how the ACEIs and ARBs can be developed for therapeutics in PD.


Assuntos
Encéfalo , Doença de Parkinson , Sistema Renina-Angiotensina , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Encéfalo/patologia , Encéfalo/metabolismo , Animais , Antagonistas de Receptores de Angiotensina/uso terapêutico , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/farmacologia
4.
J Cell Mol Med ; 28(10): e18368, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38752280

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder of the brain and is manifested by motor and non-motor symptoms because of degenerative changes in dopaminergic neurons of the substantia nigra. PD neuropathology is associated with mitochondrial dysfunction, oxidative damage and apoptosis. Thus, the modulation of mitochondrial dysfunction, oxidative damage and apoptosis by growth factors could be a novel boulevard in the management of PD. Brain-derived neurotrophic factor (BDNF) and its receptor tropomyosin receptor kinase type B (TrkB) are chiefly involved in PD neuropathology. BDNF promotes the survival of dopaminergic neurons in the substantia nigra and enhances the functional activity of striatal neurons. Deficiency of the TrkB receptor triggers degeneration of dopaminergic neurons and accumulation of α-Syn in the substantia nigra. As well, BDNF/TrkB signalling is reduced in the early phase of PD neuropathology. Targeting of BDNF/TrkB signalling by specific activators may attenuate PD neuropathology. Thus, this review aimed to discuss the potential role of BDNF/TrkB activators against PD. In conclusion, BDNF/TrkB signalling is decreased in PD and linked with disease severity and long-term complications. Activation of BDNF/TrkB by specific activators may attenuate PD neuropathology.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Doença de Parkinson , Receptor trkB , Transdução de Sinais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Humanos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Receptor trkB/metabolismo , Animais , Glicoproteínas de Membrana/metabolismo , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia
5.
J Neurosci Res ; 102(1): e25261, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38284858

RESUMO

Membrane trafficking is a physiological process encompassing different pathways involved in transporting cellular products across cell membranes to specific cell locations via encapsulated vesicles. This process is required for cells to mature and function properly, allowing them to adapt to their surroundings. The retromer complex is a complex composed of nexin proteins and peptides that play a vital role in the endosomal pathway of membrane trafficking. In humans, any interference in normal membrane trafficking or retromer complex can cause profound changes such as those seen in neurodegenerative disorders such as Alzheimer's and Parkinson's. Several studies have explored the potential causative mechanisms in developing both disease processes; however, the role of retromer trafficking in their pathogenesis is becoming increasingly significant with promising therapeutic applications. This manuscript describes the processes involved in membrane transport and the roles of the retromer in the onset and progression of Alzheimer's and Parkinson's. Moreover, we will also explore how these aberrant mechanisms may serve as possible avenues for treatment development in both diseases and the prospect of its future application.


Assuntos
Doença de Alzheimer , Doença de Parkinson , Humanos , Membrana Celular , Transporte Biológico , Proteínas Associadas aos Microtúbulos
6.
J Med Virol ; 96(4): e29596, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38590017

RESUMO

Exosomes play a crucial role in intercellular communication and have emerged as significant vehicles for transporting disease-specific biomarkers. This feature provides profound insights into the progression of diseases and the responses of patients to treatments. For example, in leukemia, exosomes convey critical information through the carriage of specific proteins and nucleic acids. In the case of human papillomavirus (HPV)-mediated cervical cancer, exosomes are particularly useful for noninvasive detection as they transport high-risk HPV DNA and specific biomolecules, which can be indicators of the disease. Despite their vast potential, there are several challenges associated with the use of exosomes in medical diagnostics. These include their inherent heterogeneity, the need for enhanced sensitivity in detection methods, the establishment of standardization protocols, and the requirement for cost-effective scalability in their application. Addressing these challenges is crucial for the effective implementation of exosome-based diagnostics. Future research and development are geared towards overcoming these obstacles. Efforts are concentrated on refining the processes of biomarker discovery, establishing comprehensive regulatory frameworks, developing convenient point-of-care devices, exploring methods for multimodal detection, and conducting extensive clinical trials. The ultimate goal of these efforts is to inaugurate a new era of precision diagnostics within healthcare. This would significantly improve patient outcomes and reduce the burden of diseases such as leukemia and HPV-mediated cervical cancer. The integration of exosomes with cutting-edge technology holds the promise of significantly reinforcing the foundations of healthcare, leading to enhanced diagnostic accuracy, better disease monitoring, and more personalized therapeutic approaches.


Assuntos
Exossomos , Leucemia , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/diagnóstico , Neoplasias do Colo do Útero/tratamento farmacológico , Papillomavirus Humano , Infecções por Papillomavirus/complicações , Infecções por Papillomavirus/diagnóstico
7.
Cell Mol Neurobiol ; 44(1): 55, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977507

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory impairment and cognitive dysfunctions. It has been shown that hypoglycemia can adversely affect AD neuropathology. It is well-known that chronic hyperglycemia in type 2 diabetes (T2D) is regarded as a potential risk factor for the development and progression of AD. However, the effect of recurrent hypoglycemia on the pathogenesis of AD was not deeply discussed, and how recurrent hypoglycemia affects AD at cellular and molecular levels was not intensely interpreted by the previous studies. The underlying mechanisms for hypoglycaemia-induced AD are diverse such as endothelial dysfunction, thrombosis, and neuronal injury that causing tau protein hyperphosphorylation and the accumulation of amyloid beta (Aß) in the brain neurons. Of note, the glucagon hormone, which controls blood glucose, can also regulate the cognitive functions. Glucagon increases blood glucose by antagonizing the metabolic effect of insulin. Therefore, glucagon, through attenuation of hypoglycemia, may prevent AD neuropathology. Glucagon/GLP-1 has been shown to promote synaptogenesis, hippocampal synaptic plasticity, and learning and memory, while attenuating amyloid and tau pathologies. Therefore, activation of glucagon receptors in the brain may reduce AD neuropathology. A recent glucagon receptor agonist dasiglucagon which used in the management of hypoglycemia may be effective in preventing hypoglycemia and AD neuropathology. This review aims to discuss the potential role of dasiglucagon in treating hypoglycemia in AD, and how this drug reduce AD neuropathology.


Assuntos
Doença de Alzheimer , Hipoglicemia , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Hipoglicemia/metabolismo , Hipoglicemia/complicações , Animais , Fatores de Risco
8.
Cell Commun Signal ; 22(1): 106, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336645

RESUMO

Aquaporins (AQPs) are ubiquitous channel proteins that play a critical role in the homeostasis of the cellular environment by allowing the transit of water, chemicals, and ions. They can be found in many different types of cells and organs, including the lungs, eyes, brain, glands, and blood vessels. By controlling the osmotic water flux in processes like cell growth, energy metabolism, migration, adhesion, and proliferation, AQPs are capable of exerting their regulatory influence over a wide range of cellular processes. Tumour cells of varying sources express AQPs significantly, especially in malignant tumours with a high propensity for metastasis. New insights into the roles of AQPs in cell migration and proliferation reinforce the notion that AQPs are crucial players in tumour biology. AQPs have recently been shown to be a powerful tool in the fight against pathogenic antibodies and metastatic cell migration, despite the fact that the molecular processes of aquaporins in pathology are not entirely established. In this review, we shall discuss the several ways in which AQPs are expressed in the body, the unique roles they play in tumorigenesis, and the novel therapeutic approaches that could be adopted to treat carcinoma.


Assuntos
Aquaporinas , Neoplasias , Humanos , Neoplasias/patologia , Carcinogênese , Transformação Celular Neoplásica , Água/metabolismo , Aquaporinas/química , Aquaporinas/metabolismo
9.
Diabetes Obes Metab ; 26(8): 3031-3044, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38802993

RESUMO

Depression is a mood disorder that may increase risk for the development of insulin resistance (IR) and type 2 diabetes (T2D), and vice versa. However, the mechanistic pathway linking depression and T2D is not fully elucidated. The aim of this narrative review, therefore, was to discuss the possible link between depression and T2D. The coexistence of T2D and depression is twice as great compared to the occurrence of either condition independently. Hyperglycaemia and dyslipidaemia promote the incidence of depression by enhancing inflammation and reducing brain serotonin (5-hydroxytryptamine [5HT]). Dysregulation of insulin signalling in T2D impairs brain 5HT signalling, leading to the development of depression. Furthermore, depression is associated with the development of hyperglycaemia and poor glycaemic control. Psychological stress and depression promote the development of T2D. In conclusion, T2D could be a potential risk factor for the development of depression through the induction of inflammatory reactions and oxidative stress that affect brain neurotransmission. In addition, chronic stress in depression may induce the development of T2D through dysregulation of the hypothalamic-pituitary-adrenal axis and increase circulating cortisol levels, which triggers IR and T2D.


Assuntos
Depressão , Diabetes Mellitus Tipo 2 , Resistência à Insulina , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Depressão/etiologia , Estresse Psicológico/complicações , Estresse Psicológico/fisiopatologia , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiopatologia , Encéfalo/metabolismo , Estresse Oxidativo/fisiologia , Fatores de Risco , Hiperglicemia/metabolismo , Sistema Hipófise-Suprarrenal/fisiopatologia , Sistema Hipófise-Suprarrenal/metabolismo , Transtorno Depressivo/etiologia , Serotonina/metabolismo
10.
J Integr Neurosci ; 23(4): 80, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682215

RESUMO

Parkinson's disease is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms, including hallucinations. The use of antipsychotic medications is a common strategy to manage hallucinations associated with Parkinson's disease psychosis (PDP). However, careful consideration is necessary when selecting the most appropriate drug due to the potential risks associated with the available treatment options. Atypical antipsychotics (AAPs), such as Pimavanserin and Clozapine, have effectively controlled PDP symptoms. On the contrary, the support for utilizing quetiapine is not as substantial as other antipsychotics because research studies specifically investigating its application are still emerging and relatively recent. The broad mechanisms of action of AAPs, involving dopamine and serotonin receptors, provide improved outcomes and fewer side effects than typical antipsychotics. Conversely, other antipsychotics, including risperidone, olanzapine, aripiprazole, ziprasidone, and lurasidone, have been found to worsen motor symptoms and are generally not recommended for PDP. While AAPs offer favorable benefits, they are associated with specific adverse effects. Extrapyramidal symptoms, somnolence, hypotension, constipation, and cognitive impairment are commonly observed with AAP use. Clozapine, in particular, carries a risk of agranulocytosis, necessitating close monitoring of blood counts. Pimavanserin, a selective serotonin inverse agonist, avoids receptor-related side effects but has been linked to corrected QT (QTc) interval prolongation, while quetiapine has been reported to be associated with an increased risk of mortality. This review aims to analyze the benefits, risks, and mechanisms of action of antipsychotic medications to assist clinicians in making informed decisions and enhance patient care.


Assuntos
Antipsicóticos , Clozapina , Alucinações , Doença de Parkinson , Piperidinas , Fumarato de Quetiapina , Humanos , Antipsicóticos/administração & dosagem , Antipsicóticos/efeitos adversos , Antipsicóticos/farmacologia , Clozapina/efeitos adversos , Clozapina/administração & dosagem , Clozapina/farmacologia , Alucinações/tratamento farmacológico , Alucinações/etiologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/complicações , Piperidinas/efeitos adversos , Piperidinas/farmacologia , Piperidinas/administração & dosagem , Fumarato de Quetiapina/efeitos adversos , Fumarato de Quetiapina/farmacologia , Fumarato de Quetiapina/administração & dosagem , Ureia/análogos & derivados , Ureia/farmacologia , Ureia/efeitos adversos
11.
Chem Biodivers ; 21(8): e202301888, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38403786

RESUMO

The genus Cornus (Cornaceae) plants are widely distributed in Europe, southwest Asia, North America, and the mountains of Central America, South America, and East Africa. Cornus plants exhibit antimicrobial, antioxidative, antiproliferative, cytotoxic, antidiabetic, anti-inflammatory, neuroprotective and immunomodulatory activities. These plants are exploited to possess various phytoconstituents such as triterpenoids, iridoids, anthocyanins, tannins and flavonoids. Pharmacological research and clinical investigations on various Cornus species have advanced significantly in recent years. Over the past few decades, a significant amount of focus has also been made into developing new delivery systems for Cornus mas and Cornus officinalis. This review focuses on the morphological traits, ethnopharmacology, phytochemistry, pharmacological activities and clinical studies on extracts and active constituents from plants of Cornus genus. The review also highlights recent novel delivery systems for Cornus mas and Cornus officinalis extracts to promote sustained and targeted delivery in diverse disorders. The overwhelming body of research supports the idea that plants from the genus Cornus have therapeutic potential and can be investigated in the future for treatingseveral ailments.


Assuntos
Cornus , Extratos Vegetais , Humanos , Cornus/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Animais , Sistemas de Liberação de Medicamentos
12.
Chem Biodivers ; 21(8): e202301724, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38563654

RESUMO

The current study aimed to evaluate the physicochemical properties of Fernandoa adenophylla. Powder studies were carried out to estimate the quantitative physicochemical characteristics of the crude drug, including moisture content, ash content, and extractive values. Using a Soxhlet apparatus and different analytical grade solvents, 3 sample extracts of a crude drug were made. To evaluate the potentially toxic nature, an acute oral toxicity study was performed as per OECD guideline no. 423. Sample extracts were tested and analyzed by ANOVA for pharmacological potential (analgesic, antipyretic, and antidiabetic) using Wister-Albino rats. Where physicochemical analysis indicated purity, quality, and presence of organic/inorganic materials in crude drug extracts, no sign of mortality was found up to 2000 mg/kg of body weight of Fernandoa adenophyllas extracts. Analgesic activity was observed in all sample extracts, whereas only chloroform and ethanolic extracts expressed antipyretic and antidiabetic potential. Ethanolic extract was found to be most potent in pharmacological potential as 200 mg/kg extract dose exhibited %age pain inhibition of 55.12 % and reduced body temperature from 39.78±0.03 °C to 37.22±0.02 °C in hyperthermic rats. A decrease in blood glucose levels up to 57.88 % was observed on the 21st day of the treatment with 500 mg/kg ethanolic extract.


Assuntos
Analgésicos , Antipiréticos , Frutas , Hipoglicemiantes , Extratos Vegetais , Ratos Wistar , Animais , Ratos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/isolamento & purificação , Analgésicos/farmacologia , Analgésicos/química , Analgésicos/isolamento & purificação , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Frutas/química , Antipiréticos/farmacologia , Antipiréticos/química , Antipiréticos/isolamento & purificação , Masculino , Glicemia/efeitos dos fármacos , Glicemia/análise , Dor/tratamento farmacológico , Dor/induzido quimicamente , Feminino
13.
Inflammopharmacology ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39141151

RESUMO

Endothelial dysfunction is considered one of the main causes of atherosclerosis and elevated blood pressure. Atherosclerosis (AS) formation is enhanced by different mechanisms including cytokine generation, vascular smooth muscle cell proliferation, and migration. One of the recent treatment toward endothelial dysfunction is vinpocetine (VPN). VPN is an ethyl apovincaminate used in the management of different cerebrovascular disorders and endothelial dysfunction through inhibition of atherosclerosis formation. VPN is a potent inhibitor of phosphodiesterase enzyme 1 (PDE1) as well it has anti-inflammatory and antioxidant effects through inhibition of the expression of nuclear factor kappa B (NF-κB). VPN has been shown to be effective against development and progression of AS. However, the underlying molecular mechanism was not fully clarified. Consequently, objective of the present narrative review was to clarify the mechanistic role of VPN in AS. Most of pro-inflammatory cytokines released from macrophages are inhibited by the action of VPN via NF-κB-dependent mechanism. VPN blocks monocyte adhesion and migration by inhibiting the expression of pro-inflammatory cytokines. As well, VPN is effective in reducing oxidative stress, a cornerstone in the pathogenesis of AS, through inhibition of NF-κB and PDE1. VPN promotes plaque stability and prevent erosion and rupture of atherosclerotic plaque. In conclusion, VPN through mitigation of inflammatory and oxidative stress with plaque stability effects could be effective agent in the management of endothelial dysfunction through inhibition of atherosclerosis mediators.

14.
Environ Geochem Health ; 46(5): 148, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578547

RESUMO

A slight variation in ecological milieu of plants, like drought, heavy metal toxicity, abrupt changes in temperature, flood, and salt stress disturbs the usual homeostasis or metabolism in plants. Among these stresses, salinity stress is particularly detrimental to the plants, leading to toxic effects and reduce crop productivity. In a saline environment, the accumulation of sodium and chloride ions up to toxic levels significantly correlates with intracellular osmotic pressure, and can result in morphological, physiological, and molecular alterations in plants. Increased soil salinity triggers salt stress signals that activate various cellular-subcellular mechanisms in plants to enable their survival in saline conditions. Plants can adapt saline conditions by maintaining ion homeostasis, activating osmotic stress pathways, modulating phytohormone signaling, regulating cytoskeleton dynamics, and maintaining cell wall integrity. To address ionic toxicity, researchers from diverse disciplines have explored novel approaches to support plant growth and enhance their resilience. One such approach is the application of nanoparticles as a foliar spray or seed priming agents positively improve the crop quality and yield by activating germination enzymes, maintaining reactive oxygen species homeostasis, promoting synthesis of compatible solutes, stimulating antioxidant defense mechanisms, and facilitating the formation of aquaporins in seeds and root cells for efficient water absorption under various abiotic stresses. Thus, the assessment mainly targets to provide an outline of the impact of salinity stress on plant metabolism and the resistance strategies employed by plants. Additionally, the review also summarized recent research efforts exploring the innovative applications of zinc oxide nanoparticles for reducing salt stress at biochemical, physiological, and molecular levels.


Assuntos
Óxido de Zinco , Estresse Salino , Estresse Fisiológico , Reguladores de Crescimento de Plantas/farmacologia , Antioxidantes/metabolismo , Salinidade
18.
Drug Discov Today ; 29(7): 104044, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38796097

RESUMO

The increase in diseases caused by RNA viruses, such as influenza, severe acute respiratory syndrome-coronavirus (SARS-CoV), Middle East respiratory syndrome (MERS), and Ebola, presents a growing global health challenge as well as the threat of zoonosis. Traditional antiviral treatments are often undermined by fast-mutating viruses, drug resistance, and newly emerging pathogens. Here, we explore proteolysis-targeting chimeras (PROTACs), a novel protein degradation machinery that has the potential to reshape the way in which RNA viral infections can be managed. PROTACs excel at specifically degrading pathogenic proteins, offering a targeted and efficient antiviral strategy. We also investigate the potential of exosome-based diagnostic technologies, which harness cell-derived nanovesicles for non-invasive sampling and early viral infection detection. Addressing the challenge of PROTAC delivery, we introduce a groundbreaking strategy utilizing exosomes to deliver PROTACs with improved precision and as a targeted delivery vehicle. Integrating these innovative strategies provides a novel approach to combat RNA zoonotic viral diseases, paving the way for a new era in antiviral therapy.


Assuntos
Antivirais , Exossomos , Proteólise , Humanos , Animais , Antivirais/farmacologia , Antivirais/administração & dosagem , Proteólise/efeitos dos fármacos , Infecções por Vírus de RNA/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Zoonoses/tratamento farmacológico , Zoonoses/virologia
19.
J Alzheimers Dis ; 97(3): 1111-1123, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38306057

RESUMO

BACKGROUND: Herpes simplex virus type 1 (HSV-1) is associated with Alzheimer's disease, which goes into a cycle of latency and reactivation. The present study was envisaged to understand the reasons for latency and specific molecular patterns present in the HSV-1. OBJECTIVE: The objective is the molecular dissection of Herpes simplex virus type 1 to elucidate molecular mechanisms behind latency and compare its codon usage patterns with genes modulated during Alzheimer's disease as a part of host-pathogen interaction. METHODS: In the present study, we tried to investigate the potential reasons for the latency of HSV-1 virus bioinformatically by determining the CpG patterns. Also, we investigated the codon usage pattern, the presence of rare codons, codon context, and protein properties. RESULTS: The top 222 codon pairs graded based on their frequency in the HSV-1 genome revealed that with only one exception (CUG-UUU), all other codon pairs have codons ending with G/C. Considering it an extension of host-pathogen interaction, we compared HSV-1 codon usage with that of codon usage of genes modulated during Alzheimer's disease, and we found that CGT and TTT are only two codons that exhibited similar codon usage patterns and other codons showed statistically highly significant different codon preferences. Dinucleotide CpG tends to mutate to TpG, suggesting the presence of mutational forces and the imperative role of CpG methylation in HSV-1 latency. CONCLUSIONS: Upon comparison of codon usage between HSV-1 and Alzheimer's disease genes, no similarities in codon usage were found as a part of host-pathogen interaction. CpG methylation plays an imperative role in latency HSV-1.


Assuntos
Doença de Alzheimer , Herpes Simples , Herpesvirus Humano 1 , Humanos , Herpesvirus Humano 1/genética , Uso do Códon , Doença de Alzheimer/genética , Interações Hospedeiro-Patógeno/genética , Herpes Simples/metabolismo
20.
Eur J Med Res ; 29(1): 205, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539252

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease as a result of the degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The fundamental features of PD are motor and non-motor symptoms. PD symptoms develop due to the disruption of dopaminergic neurotransmitters and other neurotransmitters such as γ-aminobutyric acid (GABA). The potential role of GABA in PD neuropathology concerning the motor and non-motor symptoms of PD was not precisely discussed. Therefore, this review intended to illustrate the possible role of GABA in PD neuropathology regarding motor and non-motor symptoms. The GABA pathway is essential in regulating the inhibitory tone to prevent excessive stimulation of the cerebral cortex. Degeneration of dopaminergic neurons in PD is linked with reducing GABAergic neurotransmission. Decreasing GABA activity promotes mitochondrial dysfunction and oxidative stress, which are highly related to PD neuropathology. Hence, restoring GABA activity by GABA agonists may attenuate the progression of PD motor symptoms. Therefore, dysregulation of GABAergic neurons in the SNpc contributes to developing PD motor symptoms. Besides, PD non-motor symptoms are also related to the dysfunction of the GABAergic pathway, and amelioration of this pathway may reduce PD non-motor symptoms. In conclusion, the deregulation of the GABAergic pathway in PD might be intricate in developing motor and non-motor symptoms. Improving this pathway might be a novel, beneficial approach to control PD symptoms.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Ácido gama-Aminobutírico/fisiologia , Neurotransmissores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa