RESUMO
The fabrication of red fluorescent hybrid mesoporous silica-based nanosensor materials has promised the bioimaging and selective detection of toxic pollutants in aqueous solutions. In this study, we present a hybrid mesoporous silica nanosensor in which the propidium iodide (PI) was used to conveniently integrate into the mesopore walls using bis(trimethoxysilylpropyl silane) precursors. Various characterization techniques including X-ray diffraction (XRD), Fourier-transform infrared (FTIR), N2 adsorption-desorption, zeta potential, particle size analysis, thermogravimetric, and UV-visible analysis were used to analyze the prepared materials. The prepared PI integrated mesoporous silica nanoparticles (PI-MSNs) selective metal ion sensing capabilities were tested with a variety of heavy metal ions (100 mM), including Ni2+, Cd2+, Co2+, Zn2+, Cr3+, Cu2+, Al3+, Mg2+, Hg2+ and Fe3+ ions. Among the investigated metal ions, the prepared PI-MSNs demonstrated selective monitoring of Fe3+ ions with a significant visible colorimetric pink color change into orange and quenching of pink fluorescence in an aqueous suspension. The selective sensing behavior of PI-MSNs might be due to the interaction of Fe3+ ions with the integrated PI functional fluorophore present in the mesopore walls. Therefore, we emphasize that the prepared PI-MSNs could be efficient for selective monitoring of Fe3+ ions in an aqueous solution and in the biological cellular microenvironment.
Assuntos
Metais Pesados , Nanopartículas , Colorimetria , Dióxido de Silício , Metais Pesados/análise , ÍonsRESUMO
Aroma or fragrance in rice is a genetically controlled trait; Its high appreciation by consumers increases the rice market price. Previous studies have revealed that the rice aroma is controlled by a specific gene called BETAINE ALDEHYDE DEHYDROGENASE (OsBADH2), and mutation of this gene leads to the accumulation of an aromatic substance 2-acetyl-1-pyrroline (2-AP). The use of genetic engineering to produce aroma in commercial and cultivated hybrids is a contemporary need for molecular breeding. The current study reports the generation of aroma in the three-line hybrid restorer line Shu-Hui-313 (SH313). We created knock-out (KO) lines of OsBADH2 through the CRISPR/Cas9. The analysis of KO lines revealed a significantly increased content of 2AP in the grains compared with the control. However, other phenotypic traits (plant height, seed setting rate, and 1000-grain weight) were significantly decreased. These KO lines were crossed with a non-aromatic three-line hybrid rice male sterile line (Rong-7-A) to produce Rong-7-You-626 (R7Y626), R7Y627 and R7Y628. The measurement of 2-AP revealed significantly increased contents in these cross combinations. We compared the content of 2-AP in tissues at the booting stage. Data revealed that young spike stalk base contained the highest content of 2-AP and can be used for identification (by simple chewing) of aromatic lines under field conditions. In conclusion, our dataset offers a genetic source and illustrates the generation of aroma in non-aromatic hybrids, and outlines a straightforward identification under field conditions.
Assuntos
Betaína/análogos & derivados , Oryza , Oryza/genética , Sistemas CRISPR-Cas/genética , Odorantes , Genes de PlantasRESUMO
Here, we present an interesting, previously unreported method for fractionating a particular class of cannabinoids from the crude leaf extract of Cannabis sativa using HP-20 resins. In this study, we report a novel method of divergent synthesis of fractionated Cannabis sativa extract, which allows the generation of multiple cannabinoids C- and O-glycosides which react with the glycosyl donor 2,3,4,6-tetra-O-acetyl-d-mannosyl trichloroacetimidate (TAMTA) to create eight C- and O-ß-d-cannabinoids glycosides (COCG), which are separated by HPLC and whose structures are characterized by 1D, 2D NMR, and mass spectrometry. These glycosides exhibit improved anti-proliferative and anti-metastatic effects against numerous cancer cell lines in vitro and are more water-soluble and stable than their parent cannabinoids. The in vitro testing of the pure cannabinoids (1-4) and their C- & O-glycosides (1a-4a) and 1b-4b exhibited anti-proliferative and anti-metastatic activities against a panel of eight human cancer cell lines in contrast to their respective parent molecules. Different cancer cell lines' IC50 values varied significantly when their cell viability was compared. In addition to the others, compounds 2a, 3a, 4a, and 2b, 3b were highly potent, with IC50values ranging from 0.74 µM (3a) to 51.40 µM (4a).Although2a(1.42 µM) and3a(0.74 µM) exhibited lower IC50values in the MiaPaca-2 cell line than4a(2.58 µM). But, in addition to the comparable anti-clonogenic activity of4ain MiaPaca-2 and Panc-1 cells, it manifested remarkable anti-invasive activity than either 2a or 3a.In contrast to 2a, 2b, 3a, and 3b and their respective parent compounds,4ahad substantial anti-invasive/anti-metastatic capabilities and possessed anti-proliferative activity.The effects of 4a treatment on MiaPaca-2 and Panc-1 cells include a dose-dependent increase in the expression of E-cadherin and a significant decrease in the expression of Zeb-1, Vimentin, and Snail1. Our results demonstrate that divergent synthesis of fractionated Cannabis sativa extract is a feasible and efficient strategy to produce a library of novel cannabinoid glycosides with improved pharmacological properties and potential anticancer benefits.
Assuntos
Canabinoides , Cannabis , Neoplasias , Humanos , Canabinoides/farmacologia , Canabinoides/química , Canabinoides/metabolismo , Cannabis/química , Cannabis/metabolismo , Glicosídeos/farmacologia , Glicosídeos/metabolismo , Espectroscopia de Ressonância Magnética , Extratos Vegetais/químicaRESUMO
Meningioma is a common brain tumour which has neither a specific detection nor treatment method. The Sonic hedgehog (Shh) cell signaling pathway is a crucial regulatory pathway of mammalian organogenesis and tumorigenesis including meningioma. Shh cell signalling pathway cascade function by main transcription factor Gli1 and which further regulates in its downstream to Pax6 and Nkx2.2. This current study is aimed to explore the regulation of the Sonic hedgehog-Gli1 cell signaling pathway and its potential downstream targets in meningioma samples. A total of 24 surgically resected meningioma samples were used in this current study.Cytological changes were assessed using electron microscopic techniques as well as hematoxylin & eosin and DAPI staining. The expression pattern of Gli1, Nkx2.2 and Pax6 transcription factors were determined by using immunohistochemistry. The mRNA expression was assessed using RT-qPCR assays. Later, the whole transcriptome analysis of samples was performed with the amploseq technique. Results were compared with those obtained in normal human brain tissue (or normal meninges). Compared to the normal human brain tissue, meningioma samples showed crowded nuclei with morphological changes. Transcription factor Nkx2.2 expressed highly in all samples (24/24, 100%). Twenty-one of the 24 meningiomas (88%) showed high Gli1 and Pax6 expression. Whole transcriptome analysis of two meningioma samples also exhibited a very high increase in Gli1 expression signal in meningioma samples as compare to normal control. Hence, we may conclude that the Shh-Gli1 pathway is aberrantly activated in meningioma cells and is canonically upregulating the expression of transcription factors Pax6 and Nkx2.2. Supplementary Information: The online version contains supplementary material available at 10.1007/s12291-022-01085-1.
RESUMO
As a major concern in the healthcare sector, polypharmacy is correlated with an increased risk of potential drug-drug interactions (pDDIs), treatment costs and adverse drug reactions (ADR). To assess the prevalence of polypharmacy and its associated factors among postoperative cardiac patients admitted to the National Institute of Cardiovascular Diseases (NICVD), a hospital-based cross-sectional study was conducted between November 2021 and April 2022. Medication charts of postoperative patients were reviewed for medication utilization and polypharmacy. Data was collected using a form approved by the Ethical Review Committee (ERC) regarding patient's clinical and demographic characteristics and medications administered. Statistical analysis was performed using the SPSS software version 25.0. Patients were taking an average of 10.3±1.7 medications. The minimum number of drugs taken per patient was 5, while the maximum was 15 drugs. Only 114 (29.7%) received polypharmacy (5-9 drugs) and hyper-polypharmacy (≥10 drugs) was 270 (70.3%). The mean±SD cardiovascular drugs used were 5.45±1.18 and the mean±SD non-cardiovascular drugs were 4.83±1.18. The prevalence of hyper-polypharmacy suggests a critical need for optimized medication management strategies in this population. Incorporating clinical pharmacists within public healthcare institutions can address polypharmacy-related challenges and enhance medication safety, adherence and patient outcomes.
Assuntos
Farmacêuticos , Polimedicação , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Transversais , Paquistão , Idoso , Adulto , Interações Medicamentosas , Serviço de Farmácia Hospitalar , Cardiopatias/cirurgia , PrevalênciaRESUMO
Here we describe the antimicrobial potential of secondary metabolites, fulvic acid (F.A.) and anhydrofulvic acid (AFA), produced by RDE147, an endophyte of Rosa damascena Mill. The endophyte was identified as Cercospora piaropi by ITS and ß-tubulin-based phylogenetic analyses, while chemoprofiling of the endophyte by column chromatography and spectroscopy yielded two pure compounds, F.A. and AFA. The compounds demonstrated different antimicrobial profiles, with AFA suppressing the growth of C. albicans at 7.3 µg ml-1 IC50. Further studies revealed that AFA strongly restricted the biofilm production and hyphae formation in C. albicans by down-regulating several biofilm and morphogenesis-related genes. The time-kill assays confirmed the fungicidal activity of AFA against C. albicans, killing 83.6% of the pathogen cells in 24 h at the MIC concentration, and the post-antibiotic effect (PAE) experiments established the suppression of C. albicans growth for extended time periods. The compound acted synergistically with amphotericin B and nystatin and reduced ergosterol biosynthesis by the pathogen, confirmed by ergosterol estimation and comparative expression profiling of selected genes and molecular docking of AFA with C. albicans squalene epoxidase. AFA also suppressed the expression of several other virulence genes of the fungal pathogen. The study determines the anti-C. albicans potential of AFA and its impact on the biology of the pathogen. It also indicates that Cercospora species may yield potential bioactive molecules, especially fulvic acid derivatives. However, it is imperative to conduct in vivo studies to explore this molecule's therapeutic potential further.
Assuntos
Candida albicans , Rosa , Candida albicans/metabolismo , Fatores de Virulência/metabolismo , Rosa/metabolismo , Cercospora/metabolismo , Simulação de Acoplamento Molecular , Filogenia , Biofilmes , Ergosterol/metabolismo , Proliferação de Células , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Testes de Sensibilidade MicrobianaRESUMO
Glioma is a major brain tumor, and the associated mortality rate is very high. Contemporary therapies provide a chance of survival for 9-12 months. Therefore, a novel approach is essential to improve the survival rate. Sonic hedgehog (Shh) cell signaling is critical for early development in various tumors. This investigation attempted to explore the potential interaction and regulation of Shh-Gli1 cell signaling in association with paired box 6 (Pax6) and isocitrate dehydrogenase 2 (IDH2). The expression pattern of Shh, Gli1, Pax6, and IDH2 was examined by transcriptome analysis, immunohistochemistry, and confocal images. The results suggest the interaction of Shh-Gli1 cell signaling pathway with Pax6 and IDH2 and potential regulation. Thereafter, we performed protein-protein docking and molecular dynamic simulations (MDS) of Gli1 with Pax6 and IDH2. The results suggest differential dynamic interactions of Gli1-IDH2 and Gli1-Pax6. Gli1 knockdown downregulated the expression of Pax6 and upregulated the expression of IDH2. Moreover, Gli1 knockdown decreased the expression of the drug resistance gene MRP1. The knockdown of Pax6 gene in glioma cells downregulated the expression of Gli1 and IDH2 and promoted cell proliferation. Moreover, the efficacy of the treatment of glioma cells with temozolomide (TMZ) and Gli1 inhibitor GANT61 was higher than that of TMZ alone. MDS results revealed that the interactions of Gli1 with IDH2 were stronger and more stable than those with Pax6. Intriguingly, inhibition of Pax6 promoted glioma growth even in the presence of TMZ. However, the tumor-suppressive nature of Pax6 was altered when Gli1 was inhibited by GANT61, and it showed potential oncogenic character, as observed in other cancers. Therefore, we conclude that Pax6 interacted with IDH2 and Gli1 in glioma. Moreover, the Shh-Gli1-IDH2/Pax6 cell signaling axis provides a new therapeutic approach for inhibiting the progression of the disease and mitigating drug resistance in glioma.
Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Proteínas Hedgehog/metabolismo , Glioma/tratamento farmacológico , Glioma/metabolismo , Neoplasias Encefálicas/metabolismo , Temozolomida/farmacologia , Fator de Transcrição PAX6/genéticaRESUMO
Phytochemicals are plant secondary metabolites that show health benefits for humans due to their bioactivity. There is a huge variety of phytochemicals that have already been identified, and these compounds can act as antimicrobial and neuroprotection agents. Due to their anti-microbial activity and neuroprotection, several phytochemicals might have the potency to be used as natural therapeutic agents, especially for Helicobacter pylori infection and neurodegenerative disease, which have become a global health concern nowadays. According to previous research, there are some connections between H. pylori infection and neurodegenerative diseases, especially Alzheimer's disease. Hence, this comprehensive review examines different kinds of phytochemicals from natural sources as potential therapeutic agents to reduce H. pylori infection and improve neurodegenerative disease. An additional large-scale study is needed to establish the connection between H. pylori infection and neurodegenerative disease and how phytochemicals could improve this condition.
Assuntos
Infecções por Helicobacter , Helicobacter pylori , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Infecções por Helicobacter/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doenças Neurodegenerativas/tratamento farmacológico , Doenças Neurodegenerativas/prevenção & controle , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêuticoRESUMO
The destruction of ß-cells of the pancreas leads to either insulin shortage or the complete absence of insulin, which in turn causes diabetes Mellitus. For treating diabetes, many trials have been conducted since the 19th century until now. In ancient times, insulin from an animal's extract was taken to treat human beings. However, this resulted in some serious allergic reactions. Therefore, scientists and researchers have tried their best to find alternative ways for managing diabetes with progressive advancements in biotechnology. However, a lot of research trials have been conducted, and they discovered more progressed strategies and approaches to treat type I and II diabetes with satisfaction. Still, investigators are finding more appropriate ways to treat diabetes accurately. They formulated insulin analogs that mimic the naturally produced human insulin through recombinant DNA technology and devised many methods for appropriate delivery of insulin. This review will address the following questions: What is insulin preparation? How were these devised and what are the impacts (both positive and negative) of such insulin analogs against TIDM (type-I diabetes mellitus) and TIIDM (type-II diabetes mellitus)? This review article will also demonstrate approaches for the delivery of insulin analogs into the human body and some future directions for further improvement of insulin treatment.
RESUMO
Correction for 'Recent advances in Cu-catalyzed transformations of internal alkynes to alkenes and heterocycles' by Javeed Ur Rasool et al., Org. Biomol. Chem., 2021, 19, 10259-10287, DOI: 10.1039/d1ob01709h.
RESUMO
Correction for 'Triethylamine-methanol mediated selective removal of oxophenylacetyl ester in saccharides' by Javeed Ur Rasool et al., Org. Biomol. Chem., 2021, 19, 338-347, DOI: 10.1039/d0ob02192j.
RESUMO
We have recently highlighting the role of spiroisoxazoline arteannuin B derivatives in mediating proinflammatory cytokines like IL-6, TNfα and NO in vitro. In the present study, a series of new ß-arylated arteannuin B analogues were synthesized through coupling with arylboroic acids and evaluated for their in vitro cytotoxic activity in a panel of six cancer cell lines. The binding efficiency was verified by docking of the original ligand within the active site of ATPase domain of GRP78 (PDB ID: 3LDL) at a resolution of 2.30 Å with the score energy of -8.07 kcal/mol. Among the new compounds 3a, 3b, 3d, 3i, 3j and 3n displayed potent cytotoxic potential with an IC50 from 2 to 18 µM and compound 3i was proven to be the most potent cytotoxic and anti-proliferative compound of all the six distinct cell lines. Compound 3i exhibited promising apoptosis inducing potential in breast cancer cells and stalled their wound healing properties and was effective in blocking the migration of cancer cells.
Assuntos
Antineoplásicos , Neoplasias Pulmonares , Antineoplásicos/química , Artemisininas , Ácidos Borônicos/farmacologia , Catálise , Linhagem Celular Tumoral , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Paládio , Relação Estrutura-AtividadeRESUMO
Myxobacteria have emerged as a rich manufacturer of a wide array of natural products captivating both the academic and drug discovery communities. Attempts to unearth novel bioactive, myxobacteria from unexploited habitats are far from exhaustion. This study reports the isolation of myxobacteria from dung pellets collected from various regions of northwestern Himalayas. The isolated myxobacteria were functionally characterized to evaluate their bioactive capability. Of all the isolates, ST/P/71 exhibited broad range activities such as anticancer against all the four human cancer cell lines with IC50 in range of 2.03-9.65 µg/ml, antimicrobial against all the tested human pathogens, also exhibiting biofilm inhibition with MBIC50 at 10.4 µg/ml against Salmonella typhimurium. Consequently, ST/P/71 was chosen for fermentation and isolation of bioactive secondary metabolite through semi-preparative HPLC. It yielded compound 1, characterized as di-isobutyl phthalate (DiBP) based on nuclear magnetic resonance (NMR) and mass data. DiBP exhibited promising cytotoxic activity against the lung cancer cell line (A549) at an IC50 values 3.09 µg/ml and biofilm inhibition activity against Bacillus subtilis and Salmonella typhimurium with MBIC50 2.703 and 9.263 µg/ml, respectively. ST/P/71 was identified as Myxococcus fulvus. Thus, M. fulvus ST/P/71 isolated from northwestern Himalayas is a new source of DiBP.
Assuntos
Anti-Infecciosos , Myxococcales , Ácidos Ftálicos , Animais , Antibacterianos/farmacologia , HumanosRESUMO
Heat shock transcription factors (HSF) are divided into classes A, B and C. Class A transcription factors are generally recognized as transcriptional activators, while functional characterization of class B and C heat shock transcription factors have not been fully developed in most plant species. We isolated and characterized a novel HSF transcription factor gene, TrHSFB2a (a class B HSF) gene, from the drought stress-sensitive forage crop species, white clover (Trifolium repens). TrHSFB2a was highly homologous to MtHSFB2b, CarHSFB2a, AtHSFB2b and AtHSFB2a. The expression of TrHSFB2a was strongly induced by drought (PEG6000 15% w/v), high temperature (35 °C) and salt stresses (200 mM L-1 NaCl) in white clover, while subcellular localization analysis showed that it is a nuclear protein. Overexpression of the white clover gene TrHSFB2a in Arabidopsis significantly reduced fresh and dry weight, relative water contents (RWC), maximum photosynthesis efficiency (Fv/Fm) and performance index on the absorption basis (PIABS), while it promoted leaf senescence, relative electrical conductivity (REC) and the contents of malondialdehyde (MDA) compared to a wild type under drought, heat and salt stress conditions of Arabidopsis plants. The silencing of its native homolog (AtHSFB2a) by RNA interference in Arabidopsis thaliana showed opposite trends by significantly increasing fresh and dry weights, RWC, maximum photosynthesis efficiency (Fv/Fm) and performance index on the absorption basis (PIABS) and reducing REC and MDA contents under drought, heat and salt stress conditions compared to wild type Arabidopsis plants. These phenotypic and physiological indicators suggested that the TrHSFB2a of white clover functions as a negative regulator of heat, salt and drought tolerance. The bioinformatics analysis showed that TrHSFB2a contained the core B3 repression domain (BRD) that has been reported as a repressor activator domain in other plant species that might repress the activation of the heat shock-inducible genes required in the stress tolerance process in plants. The present study explores one of the potential causes of drought and heat sensitivity in white clover that can be overcome to some extent by silencing the TrHSFB2a gene in white clover.
Assuntos
Arabidopsis , Trifolium , Secas , Arabidopsis/metabolismo , Trifolium/genética , Trifolium/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Estresse Fisiológico/genética , Estresse Salino , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Medicago/metabolismoRESUMO
Panicle degeneration, sometimes known as abortion, causes heavy losses in grain yield. However, the mechanism of naturally occurring panicle abortion is still elusive. In a previous study, we characterized a mutant, apical panicle abortion1331 (apa1331), exhibiting abortion in apical spikelets starting from the 6 cm stage of panicle development. In this study, we have quantified the five phytohormones, gibberellins (GA), auxins (IAA), abscisic acid (ABA), cytokinins (CTK), and brassinosteroids (BR), in the lower, middle, and upper parts of apa1331 and compared these with those exhibited in its wild type (WT). In apa331, the lower and middle parts of the panicle showed contrasting concentrations of all studied phytohormones, but highly significant changes in IAA and ABA, compared to the upper part of the panicle. A comparative transcriptome of apa1331 and WT apical spikelets was performed to explore genes causing the physiological basis of spikelet abortion. The differential expression analysis revealed a significant downregulation and upregulation of 1587 and 978 genes, respectively. Hierarchical clustering of differentially expressed genes (DEGs) revealed the correlation of gene ontology (GO) terms associated with antioxidant activity, peroxidase activity, and oxidoreductase activity. KEGG pathway analysis using parametric gene set enrichment analysis (PGSEA) revealed the downregulation of the biological processes, including cell wall polysaccharides and fatty acids derivatives, in apa1331 compared to its WT. Based on fold change (FC) value and high variation in expression during late inflorescence, early inflorescence, and antherdevelopment, we predicted a list of novel genes, which presumably can be the potential targets of inflorescence development. Our study not only provides novel insights into the role of the physiological dynamics involved in panicle abortion, but also highlights the potential targets involved in reproductive development.
Assuntos
Oryza , Grão Comestível/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inflorescência/genética , Inflorescência/metabolismo , Oryza/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMO
Catalases (CATs) are important self-originating enzymes and are involved in many of the biological functions of plants. Multiple forms of CATs suggest their versatile role in lesion mimic mutants (LMMs), H2O2 homeostasis and abiotic and biotic stress tolerance. In the current study, we identified a large lesion mimic mutant9428 (llm9428) from Ethyl-methane-sulfonate (EMS) mutagenized population. The llm9428 showed a typical phenotype of LMMs including decreased agronomic yield traits. The histochemical assays showed decreased cell viability and increased reactive oxygen species (ROS) in the leaves of llm9428 compared to its wild type (WT). The llm9428 showed enhanced blast disease resistance and increased relative expression of pathogenesis-related (PR) genes. Studies of the sub-cellular structure of the leaf and quantification of starch contents revealed a significant decrease in starch granule formation in llm9428. Genetic analysis revealed a single nucleotide change (C > T) that altered an amino acid (Ala > Val) in the candidate gene (Os03g0131200) encoding a CATALASE C in llm9428. CRISPR-Cas9 targetted knockout lines of LLM9428/OsCATC showed the phenotype of LMMs and reduced starch metabolism. Taken together, the current study results revealed a novel role of OsCATC in starch metabolism in addition to validating previously studied functions of CATs.
Assuntos
Oryza , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Mutação , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Amido/metabolismoRESUMO
Salicylic acid (SA) is a stress hormone synthesized in phenylalanine ammonia-lyase (PAL) and the branching acid pathway. SA has two interconvertible forms in plants: SAG (SA O-ß-glucoside) and SA (free form). The molecular mechanism of conversion of SA to SAG had been reported previously. However, which genes regulate SAG to SA remained unknown. Here, we report a cytoplasmic ß-glucosidase (ß-Glu) which participates in the SA pathway and is involved in the brown hull pigmentation in rice grain. In the current study, an EMS-generated mutant brown hull 1 (bh1) displayed decreased contents of SA in hulls, a lower photosynthesis rate, and high-temperature sensitivity compared to the wild type (WT). A plaque-like phenotype (brown pigmentation) was present on the hulls of bh1, which causes a significant decrease in the seed setting rate. Genetic analysis revealed a mutation in LOC_Os01g67220, which encodes a cytoplasmic Os1ßGlu4. The knock-out lines displayed the phenotype of brown pigmentation on hulls and decreased seed setting rate comparable with bh1. Overexpression and complementation lines of Os1ßGlu4 restored the phenotype of hulls and normal seed setting rate comparable with WT. Subcellular localization revealed that the protein of Os1ßGlu4 was localized in the cytoplasm. In contrast to WT, bh1 could not hydrolyze SAG into SA in vivo. Together, our results revealed the novel role of Os1ßGlu4 in the accumulation of flavonoids in hulls by regulating the level of free SA in the cellular pool.
Assuntos
Celulases , Oryza , Celulases/metabolismo , Flavonoides , Regulação da Expressão Gênica de Plantas , Glucosidases/metabolismo , Glucosídeos , Hormônios , Oryza/genética , Oryza/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Pigmentação/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Salicilatos , Ácido Salicílico/metabolismoRESUMO
Host inflammatory responses are key to protection against injury; however, persistent inflammation is detrimental and contributes to morbidity and mortality. Herein, we demonstrated the anti-inflammatory role of Arteannuin-B (1) and its new spirocyclic-2-isoxazoline derivative JR-9 and their side effects in acute inflammatory condition in vivo using LPS-induced cytokines assay, carrageenan-induced paw edema, acetic acid-induced writhing and tail immersion. The results show that the spirocyclic-2-isoxazoline derivative is a potent anti-inflammatory agent with minimal cell toxicity as compared to Arteannuin-B. In addition, the efficacies of these compounds were also validated by flow cytometric, computational, and histopathological analysis. Our results show that the anti-inflammatory response of JR-9 significantly reduces the ability of mouse macrophages to produce NO, TNF-α, and IL-6 following LPS stimulation. Therefore, JR-9 is a prospective candidate for the development of anti-inflammatory drugs and its molecular mechanism is likely related to the regulation of NF-κB and MAPK signaling pathway.
Assuntos
Lipopolissacarídeos , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Regulação para Baixo , Camundongos Endogâmicos BALB C , Macrófagos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
Quinacrine is an Acridine derivative with two potentially reactive groups; a diamino butyl side chain and an Acridine ring both capable of interacting with DNA but in different ways. This is an antimalarial drug approved by FDA for long term clinical trials and for the treatment of other diseases as well. The study evaluates the physicochemical interactions of quinacrine with DNA (calf thymus DNA) through characterizations of quinacrine DNA adduct (Q-DNA) by various techniques. It was observed that quinacrine induces stability in the structure of DNA, as the onset of melting was found to be increased by 6 °C in the melting temperature profile of Q-DNA supported by other data obtained during study, deviation from the native structure of DNA was analyzed by FTIR that showed specific shifts in the region of 1707-1400 cm-1.The study also probed the antigenicity of Q-DNA compared to its non antigenic native counterpart (N-DNA), by using both as antigens in female New Zealand White rabbits. Q-DNA was found to be antigenic with antibody titer > 1:6400. IgG was isolated and characterized to check for binding specificity. These antibodies were found to be promiscuous capable of cross reacting with other cellular molecules. Analysis of the data obtained suggested that intracellular accumulation of quinacrine and its ability to cross nucleus may allow the drug to interact with DNA. This may bring about significant structural perturbations in the macromolecule triggering an immunogenic response at the site where anti Q-DNA antibody and Q-DNA complex accumulates.
RESUMO
Article tries to visualize the potential for carcinogenic trigger in humans with a preference for oxidative synthetic of hair dyeing formulations, especially which belong to the category of permanent colours. According to the International Agency for Cancer, hair dyes for personal use are not strictly classified as carcinogen to humans. However, some controversy exists that requires clarification. Some epidemiological studies support the association between the risk of cancer development and personal use of hair dyes (pooled relative risk RR = 1.50. 95% CI: 1.30-1.98). The world-wide sale of hair dyeing cosmetics have exceeded 15 billion dollars by the year 2012 and has maintained an annual growth rate of 8-10%. This raises concerns and need to be addressed. The review article briefly discusses about the different hair dye components based on their chemical nature, permanence, interaction of dye components with different parts of the hair shaft, action mechanisms, health risk assessment, associated challenges and possible alternatives. There appears variability towards the pathological changes incurred in the human system upon the use of synthetic hair formulations. This probably appears due to the presence of interindividual genetic variation of enzymes handling these xenobiotics. The redox mechanism of major hair dye components appears to be involved in the carcinogenic trigger. Most of the hair dye constituents pose serious health issues. However, we do have few better alternatives to prevent the toxicity associated with hair dye constituents without compromising the need of today's fashion statement and expectations of the youth.