Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 192, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491471

RESUMO

Cadmium (Cd), being a heavy metal, tends to accumulate in soils primarily through industrial activities, agricultural practices, and atmospheric deposition. Maize, being a staple crop for many regions, is particularly vulnerable to Cd contamination, leading to compromised growth, reduced yields, and potential health risks for consumers. Biochar (BC), a carbon-rich material derived from the pyrolysis of organic matter has been shown to improve soil structure, nutrient retention and microbial activity. The choice of biochar as an ameliorative agent stems from its well-documented capacity to enhance soil quality and mitigate heavy metal stress. The study aims to contribute to the understanding of the efficacy of biochar in combination with GA3, a plant growth regulator known for its role in promoting various physiological processes, in mitigating the adverse effects of Cd stress. The detailed investigation into morpho-physiological attributes and biochemical responses under controlled laboratory conditions provides valuable insights into the potential benefits of these interventions. The experimental design consisted of three replicates in a complete randomized design (CRD), wherein soil, each containing 10 kg was subjected to varying concentrations of cadmium (0, 8 and 16 mg/kg) and biochar (0.75% w/w base). Twelve different treatment combinations were applied, involving the cultivation of 36 maize plants in soil contaminated with Cd (T1: Control (No Cd stress; T2: Mild Cd stress (8 mg Cd/kg soil); T3: Severe Cd stress (16 mg Cd/kg soil); T4: 10 ppm GA3 (No Cd stress); T5: 10 ppm GA3 + Mild Cd stress; T6: 10 ppm GA3 + Severe Cd stress; T7: 0.75% Biochar (No Cd stress); T8: 0.75% Biochar + Mild Cd stress; T9: 0.75% Biochar + Severe Cd stress; T10: 10 ppm GA3 + 0.75% Biochar (No Cd stress); T11: 10 ppm GA3 + 0.75% Biochar + Mild Cd stress; T12: 10 ppm GA3 + 0.75% Biochar + Severe Cd stress). The combined application of GA3 and BC significantly enhanced multiple parameters including germination (27.83%), root length (59.53%), shoot length (20.49%), leaf protein (121.53%), root protein (99.93%), shoot protein (33.65%), leaf phenolics (47.90%), root phenolics (25.82%), shoot phenolics (25.85%), leaf chlorophyll a (57.03%), leaf chlorophyll b (23.19%), total chlorophyll (43.77%), leaf malondialdehyde (125.07%), root malondialdehyde (78.03%) and shoot malondialdehyde (131.16%) across various Cd levels compared to the control group. The synergistic effect of GA3 and BC manifested in optimal leaf protein and malondialdehyde levels indicating induced tolerance and mitigation of Cd detrimental impact on plant growth. The enriched soils showed resistance to heavy metal toxicity emphasizing the potential of BC and GA3 as viable strategy for enhancing maize growth. The application of biochar and gibberellic acid emerges as an effective means to mitigate cadmium-induced stress in maize, presenting a promising avenue for sustainable agricultural practices.


Assuntos
Cádmio , Giberelinas , Poluentes do Solo , Cádmio/metabolismo , Zea mays/metabolismo , Clorofila A/metabolismo , Poluentes do Solo/metabolismo , Carvão Vegetal/farmacologia , Carvão Vegetal/metabolismo , Solo/química , Malondialdeído/metabolismo
2.
BMC Plant Biol ; 24(1): 128, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383291

RESUMO

Salinity poses significant challenges to agricultural productivity, impacting crops' growth, morphology and biochemical parameters. A pot experiment of three months was conducted between February to April 2023 in the Department of Botany, The Islamia University of Bahawalpur. Four brinjal (eggplant) varieties: ICS-BR-1351, HBR-313-D, HBR-314-E, and HBR-334-D were selected and assessed for the effects of salinity on various growth and biochemical attributes. The experiment was completely randomized in design with three replicates each. This study revealed that increased salinity significantly reduced the shoot length, root length, and leaf number across all varieties, with maximum adverse effects observed at a 300mM NaCl concentration. Among the tested varieties, ICS-BR-1351 demonstrated superior performance in most growth parameters, suggesting potential salt tolerance. Biochemically, salinity decreased chlorophyll content across all varieties, with the sharpest decline observed at the highest salt concentration. V4 (HBR-334-D) showed a 57% decrease in chlorophyll followed by V3 (HBR-314-E) at 56%, V2 (HBR-313-D) at 54%, and V1 (ICS-BR-1351) at 33% decrease at maximum salt levels as compared to control. Conversely, carotenoid content increased up to -42.11% in V3 followed by V2 at -81.48%, V4 at -94.11%, and - 233% in V1 at 300mM NaCl stress as compared to respective controls. V3 (HBR-314-E) has the maximum value for carotenoids while V1 has the lowest value for carotenoids as compared to the other three brinjal varieties. In addition to pigments, the study indicated a salinity-induced decrease in total proteins and total soluble sugar, whereas total amino acids and flavonoids increased. Total proteins showed a decrease in V2 (49.46%) followed by V3 (36.44%), V4 (53.42%), and V1 (53.79%) at maximum salt concentration as compared to plants treated with tap water only. Whereas, total soluble sugars showed a decrease of 52.07% in V3, 41.53% in V2, 19.49% in V1, and 18.99% in V4 at the highest salt level. While discussing total amino acid, plants showed a -9.64% increase in V1 as compared to V4 (-31.10%), V2 (-36.62%), and V3 (-22.61%) with high salt levels in comparison with controls. Plant flavonoid content increased in V3 (-15.61%), V2 (-19.03%), V4 (-18.27%) and V1 (-27.85%) at 300mM salt concentration. Notably, salinity elevated the content of anthocyanin, lycopene, malondialdehyde (MDA), and hydrogen peroxide (H2O2) across all varieties. Antioxidant enzymes like peroxidase, catalase, and superoxide dismutase also increased under salt stress, suggesting an adaptive response to combat oxidative damage. However, V3 (HBR-314-E) has shown an increase in anthocyanin at -80.00%, lycopene at -24.81%, MDA at -168.04%, hydrogen peroxide at -24.22%, POD at -10.71%, CAT as-36.63 and SOD as -99.14% at 300mM NaCl stress as compared to control and other varieties. The enhanced accumulation of antioxidants and other protective compounds suggests an adaptive mechanism in brinjal to combat salt-induced oxidative stress. The salt tolerance of different brinjal varieties was assessed by principal component analysis (PCA), and the order of salt tolerance was V1 (ICS-BR-1351) > V4 (HBR-334-D), > V2 (HBR-313-D) > V3 (HBR-314-E). Among the varieties studied, ICS-BR-1351 demonstrated resilience against saline conditions, potentially offering a promising candidate for saline-prone agricultural areas.


Assuntos
Antioxidantes , Solanum melongena , Antocianinas , Antioxidantes/metabolismo , Carotenoides , Clorofila/metabolismo , Peróxido de Hidrogênio/metabolismo , Licopeno , Salinidade , Tolerância ao Sal , Cloreto de Sódio/efeitos adversos , Solanum melongena/metabolismo
3.
BMC Plant Biol ; 24(1): 126, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383286

RESUMO

Heavy metal stress affects crop growth and yields as wheat (Triticum aestivum L.) growth and development are negatively affected under heavy metal stress. The study examined the effect of cobalt chloride (CoCl2) stress on wheat growth and development. To alleviate this problem, a pot experiment was done to analyze the role of sulfur-rich thiourea (STU) in accelerating the defense system of wheat plants against cobalt toxicity. The experimental treatments were, i) Heavy metal stress (a) control and (b) Cobalt stress (300 µM), ii) STU foliar applications; (a) control and (b) 500 µM single dose was applied after seven days of stress, and iii) Wheat varieties (a) FSD-2008 and (b) Zincol-2016. The results revealed that cobalt stress decreased chlorophyll a by 10%, chlorophyll b by 16%, and carotenoids by 5% while foliar application of STU increased these photosynthetic pigments by 16%, 15%, and 15% respectively under stress conditions as in contrast to control. In addition, cobalt stress enhances hydrogen peroxide production by 11% and malondialdehyde (MDA) by 10%. In comparison, STU applications at 500 µM reduced the production of these reactive oxygen species by 5% and by 20% by up-regulating the activities of antioxidants. Results have revealed that the activities of SOD improved by 29%, POD by 25%, and CAT by 28% under Cobalt stress. Furthermore, the foliar application of STU significantly increased the accumulation of osmoprotectants as TSS was increased by 23% and proline was increased by 24% under cobalt stress. Among wheat varieties, FSD-2008 showed better adaptation under Cobalt stress by showing enhanced photosynthetic pigments and antioxidant activities compared to Zincol-2016. In conclusion, the foliar-applied STU can alleviate the negative impacts of Cobalt stress by improving plant physiological attributes and upregulating the antioxidant defense system in wheat.


Assuntos
Antioxidantes , Metais Pesados , Antioxidantes/farmacologia , Triticum , Clorofila A , Cobalto/toxicidade
4.
BMC Plant Biol ; 24(1): 247, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575856

RESUMO

Pea (Pisum sativum L.), a globally cultivated leguminous crop valued for its nutritional and economic significance, faces a critical challenge of soil salinity, which significantly hampers crop growth and production worldwide. A pot experiment was carried out in the Botanical Garden, The Islamia University of Bahawalpur to alleviate the negative impacts of sodium chloride (NaCl) on pea through foliar application of ascorbic acid (AsA). Two pea varieties Meteor (V1) and Sarsabz (V2) were tested against salinity, i.e. 0 mM NaCl (Control) and 100 mM NaCl. Three levels of ascorbic acid 0 (Control), 5 and 10 mM were applied through foliar spray. The experimental design was completely randomized (CRD) with three replicates. Salt stress resulted in the suppression of growth, photosynthetic activity, and yield attributes in pea plants. However, the application of AsA treatments effectively alleviated these inhibitory effects. Under stress conditions, the application of AsA treatment led to a substantial increase in chlorophyll a (41.1%), chl. b (56.1%), total chl. contents (44.6%) and carotenoids (58.4%). Under salt stress, there was an increase in Na+ accumulation, lipid peroxidation, and the generation of reactive oxygen species (ROS). However, the application of AsA increased the contents of proline (26.9%), endogenous AsA (23.1%), total soluble sugars (17.1%), total phenolics (29.7%), and enzymatic antioxidants i.e. SOD (22.3%), POD (34.1%) and CAT (39%) in both varieties under stress. Salinity reduced the yield attributes while foliarly applied AsA increased the pod length (38.7%), number of pods per plant (40%) and 100 seed weight (45.2%). To sum up, the application of AsA alleviated salt-induced damage in pea plants by enhancing photosynthetic pigments, both enzymatic and non-enzymatic activities, maintaining ion homeostasis, and reducing excessive ROS accumulation through the limitation of lipid peroxidation. Overall, V2 (Sarsabz) performed better as compared to the V1 (Meteor).


Assuntos
Antioxidantes , Ácido Ascórbico , Antioxidantes/metabolismo , Clorofila A , Peroxidação de Lipídeos , Pisum sativum , Espécies Reativas de Oxigênio , Estresse Salino , Cloreto de Sódio/farmacologia
5.
BMC Plant Biol ; 24(1): 611, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38926637

RESUMO

Canola, a vital oilseed crop, is grown globally for food and biodiesel. With the enormous demand for growing various crops, the utilization of agriculturally marginal lands is emerging as an attractive alternative, including brackish-saline transitional lands. Salinity is a major abiotic stress limiting growth and productivity of most crops, and causing food insecurity. Salicylic acid (SA), a small-molecule phenolic compound, is an essential plant defense phytohormone that promotes immunity against pathogens. Recently, several studies have reported that SA was able to improve plant resilience to withstand high salinity. For this purpose, a pot experiment was carried out to ameliorate the negative effects of sodium chloride (NaCl) on canola plants through foliar application of SA. Two canola varieties Faisal (V1) and Super (V2) were assessed for their growth performance during exposure to high salinity i.e. 0 mM NaCl (control) and 200 mM NaCl. Three levels of SA (0, 10, and 20 mM) were applied through foliar spray. The experimental design used for this study was completely randomized design (CRD) with three replicates. The salt stress reduced the shoot and root fresh weights up to 50.3% and 47% respectively. In addition, foliar chlorophyll a and b contents decreased up to 61-65%. Meanwhile, SA treatment diminished the negative effects of salinity and enhanced the shoot fresh weight (49.5%), root dry weight (70%), chl. a (36%) and chl. b (67%). Plants treated with SA showed an increased levels of both enzymatic i.e. (superoxide dismutase (27%), peroxidase (16%) and catalase (34%)) and non-enzymatic antioxidants i.e. total soluble protein (20%), total soluble sugar (17%), total phenolic (22%) flavonoids (19%), anthocyanin (23%), and endogenous ascorbic acid (23%). Application of SA also increased the levels of osmolytes i.e. glycine betaine (31%) and total free proline (24%). Salinity increased the concentration of Na+ ions and concomitantly decreased the K+ and Ca2+ absorption in canola plants. Overall, the foliar treatments of SA were quite effective in reducing the negative effects of salinity. By comparing both varieties of canola, it was observed that variety V2 (Super) grew better than variety V1 (Faisal). Interestingly, 20 mM foliar application of SA proved to be effective in ameliorating the negative effects of high salinity in canola plants.


Assuntos
Brassica napus , Ácido Salicílico , Estresse Salino , Brassica napus/efeitos dos fármacos , Brassica napus/crescimento & desenvolvimento , Ácido Salicílico/metabolismo , Ácido Salicílico/farmacologia , Estresse Salino/efeitos dos fármacos , Clorofila/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Antioxidantes/metabolismo
6.
Genomics ; 115(5): 110695, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558012

RESUMO

The pathogenic fungus Pestalotiopsis versicolor is a major etiological agent of fungal twig blight disease affecting bayberry trees. However, the lack of complete genome sequence information for this crucial pathogenic fungus hinders the molecular and genetic investigation of its pathogenic mechanism. To address this knowledge gap, we have generated the complete genome sequence of P. versicolor strain XJ27, employing a combination of Illumina, PacBio, and Hi-C sequencing technologies. This comprehensive genome sequence, comprising 7 chromosomes with an N50 contig size of 7,275,017 bp, a GC content ratio of 50.16%, and a total size of 50.80 Mb, encompasses 13,971 predicted coding genes. By performing comparative genomic analysis between P. versicolor and the genomes of eleven plant-pathogenic fungi, as well as three closely related fungi within the same group, we have gained initial insights into its evolutionary trajectory, particularly through gene family analysis. These findings shed light on the distinctive characteristics and evolutionary history of P. versicolor. Importantly, the availability of this high-quality genetic resource will serve as a foundational tool for investigating the biology, molecular pathogenesis, and virulence of P. versicolor. Furthermore, it will facilitate the development of more potent antifungal medications by uncovering potential vulnerabilities in its genetic makeup.


Assuntos
Ascomicetos , Myrica , Myrica/genética , Genoma Fúngico , Anotação de Sequência Molecular , Ascomicetos/genética , Filogenia
7.
Ecotoxicol Environ Saf ; 257: 114935, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37086623

RESUMO

Recently, the application of cobalt oxide nanoparticles (Co3O4NPs) has gained popularity owing to its magnetic, catalytic, optical, antimicrobial, and biomedical properties. However, studies on its use as a crop protection agent and its effect on photosynthetic apparatus are yet to be reported. Here, Co3O4NPs were first green synthesized using Hibiscus rosa-sinensis flower extract and were characterized using UV-Vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction (XRD), transmission/scanning electron microscopy methods. Formation of the Co3O4NPs was attested based on surface plasmon resonance at 210 nm. XRD assay showed that the samples were crystalline having a mean size of 34.9 nm. The Co3O4NPs at 200 µg/ml inhibited the growth (OD600 = 1.28) and biofilm formation (OD570 = 1.37) of Xanthomonas oryzae pv. oryzae (Xoo) respectively, by 72.87% and 79.65%. Rice plants inoculated with Xoo had disease leaf area percentage (DLA %) of 57.25% which was significantly reduced to 11.09% on infected plants treated with 200 µg/ml Co3O4NPs. Also, plants treated with 200 µg/ml Co3O4NPs only had significant increment in shoot length, root length, fresh weight, and dry weight in comparison to plants treated with double distilled water. The application of 200 µg/ml Co3O4NPs on the Arabidopsis plant significantly increased the photochemical efficacy of PSII (ΦPSII) and photochemical quenching (qP) respectively, by 149.10% and 125.00% compared to the control while the non-photochemical energy dissipation (ΦNPQ) was significantly lowered in comparison to control. In summary, it can be inferred that Co3O4NPs can be a useful agent in the management of bacterial phytopathogen diseases.


Assuntos
Arabidopsis , Nanopartículas , Oryza , Nanopartículas/química , Óxidos/farmacologia , Doenças das Plantas/microbiologia
8.
Pestic Biochem Physiol ; 193: 105447, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37248016

RESUMO

Bacterial leaf blight (BLB) pathogen, Xanthomonas oryzae pv. oryzae (Xoo) is the most devastating bacterial pathogen, which jeopardizes the sustainable rice (Oryza sativa L.) production system. The use of antibiotics and conventional pesticides has become ineffective due to increased pathogen resistance and associated ecotoxicological concerns. Thus, the development of effective and sustainable antimicrobial agents for plant disease management is inevitable. Here, we investigated the toxicity and molecular action mechanisms of bioengineered chitosan­iron nanocomposites (BNCs) against Xoo using transcriptomic and proteomic approaches. The transcriptomic and proteomics analyses revealed molecular antibacterial mechanisms of BNCs against Xoo. Transcriptomic data revealed that various processes related to cell membrane biosynthesis, antioxidant stress, DNA damage, flagellar biosynthesis and transcriptional regulator were impaired upon BNCs exposure, which clearly showing the interaction of BNCs to Xoo pathogen. Similarly, proteomic profiling showed that BNCs treatment significantly altered the levels of functional proteins involved in the integral component of the cell membrane, catalase activity, oxidation-reduction process and metabolic process in Xoo, which is consistent with the results of the transcriptomic analysis. Overall, this study suggested that BNCs has great potential to serve as an eco-friendly, sustainable, and non-toxic alternative to traditional agrichemicals to control the BLB disease in rice.


Assuntos
Quitosana , Oryza , Xanthomonas , Transcriptoma , Quitosana/farmacologia , Quitosana/metabolismo , Ferro/farmacologia , Ferro/metabolismo , Proteômica/métodos , Xanthomonas/metabolismo , Antibacterianos , Oryza/metabolismo , Doenças das Plantas/microbiologia
9.
Molecules ; 28(11)2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37298851

RESUMO

The work here reflects synthesis, DFT studies, Hirshfeld charge analysis and crystal data exploration of pharmacologically important (R)-2-(2-(1,3-dioxoisoindolin-2-yl)propanamido)benzoic acid methyl ester (5) to understand its properties for further chemical transformations. The methyl anthranilate (2) was produced by the esterification of anthranilic acid in an acidic medium. The phthaloyl-protected alanine (4) was rendered by the fusion of alanine with phthalic anhydride at 150 °C, followed by coupling with (2) furnished isoindole (5). The characterization of products was performed using IR, UV-Vis, NMR and MS. Single-crystal XRD also verified the structure of (5) in which N-H⋯O bonding stabilizes the molecular configuration of (5), resulting in the formation of S(6) hydrogen-bonded loop. The molecules of isoindole (5) are connected in the form of dimers, and the π⋯π stacking interaction between aromatic rings further stabilizes the crystal packing. DFT studies suggest that HOMO is over the substituted aromatic ring, the LUMO is present mainly over the indole side, and nucleophilic and electrophilic corners point out the reactivity of the product (5). In vitro and in silico analysis of (5) shows its potential as an antibacterial agent targeting DNA gyrase and Dihydroorotase from E. coli and tyrosyl-tRNA synthetase and DNA gyrase from Staphylococcus aureus.


Assuntos
DNA Girase , Ésteres , Teoria da Densidade Funcional , Escherichia coli , Alanina , Ácido Benzoico , Isoindóis
10.
Environ Res ; 205: 112477, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863690

RESUMO

Green mediated biosynthesis of iron oxide nanoparticles utilising Rosa indica flower petal extracts (RIFP-FeONPs) was used in this investigation. The RIFP-FeONPs were evaluated by the UV-Visible Spectroscopy, FTIR, SEM, EDX, XRD, Zeta potentials, and DLS, and been engaged than for the elimination of Cr (VI) from the contaminated environments. At 269 nm, the RIFP-FeONPs surface plasmon vibration bands were observed, which attributed to the Fe3+. XRD patterns of RIFP-FeONPs depicted the intense diffraction peak of face-centered cubic (fcc) iron at a 2θ value of 45.33° from the (311) lattice plane indisputably revealed that the particles are constituted of pure iron. The fabricated nanomaterials are spherical and polydisperse with a diameter of 70-120 nm, and various agglomeration clusters are attributable to intermolecular interaction. Zeta potential measurement and particle size distribution of RIFP-FeONPs showed a mean average size of 115.5 ± 29 nm and a polydispersity index (PDI) of 0.420. The study aims to analyse the appropriateness of RIFP-FeONPs for removing hexavalent chromium from the aqueous environment and the application of adsorption isotherm and statistical models in the experiment. The sorption of Cr (VI) on RIFP-FeONPs was observed to fit well with the isothermal models (R2 = 0.98). The linear correlation between processing parameters and time demonstrated that the adsorption efficiency of Cr (VI) well correlated with the pseudo-first order kinetic model and isothermal adsorption with the Langmuir and Freundlich isothermal models, so that the RIFP-FeONPs could be a prospective nanosorbent for hexavalent chromium removal from industrial waste.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Adsorção , Cromo/análise , Concentração de Íons de Hidrogênio , Ferro/química , Cinética , Nanopartículas/química , Estudos Prospectivos , Poluentes Químicos da Água/análise
11.
Environ Monit Assess ; 194(12): 906, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36253629

RESUMO

Vegetables cultivated near roads absorb toxic metals from polluted soil, which enter the human body through the food chain and cause serious health problems to humans. The present study investigated the concentration of lead (Pb) and nickel (Ni) in soils and vegetables grown along the roadside of District Swat, Pakistan, and the health risks associated with the consumption of the tested vegetables. In results, Pb concentration was higher in plants located at the distance between 0-10 m away from the roadside than the WHO permissible limit. In such plants, Pb concentration was higher than Ni. Rumex dentatus contained the highest concentration of Pb (75.63 mg kg-1 DW) among the tested vegetables while Ni concentration (27.57 mg kg-1 DW) was highest in Trachyspermum ammi as compared to other plants. Concentration and accumulation of both the metals decreased in soil and plants with increasing distance from the road. Similarly, target hazard quotient values noted for Pb (up to 3.37) were greater than unity, which shows that there is a potential risk associated with the consumption of tested vegetables near the road. Moreover, the values of target cancer risk (up to 0.8413) were greater than 0.0001, which shows that there is a risk of cancer with the consumption of tested vegetables. In conclusion, the consumption of tested vegetables was very dangerous as it may lead to higher risks of cancer. Strict regulatory control is recommended on the cultivation of these vegetables along the roadside to avoid any contamination due to roadside exhaust.


Assuntos
Metais Pesados , Poluentes do Solo , Monitoramento Ambiental , Humanos , Chumbo , Metais Pesados/análise , Níquel , Paquistão , Plantas , Medição de Risco , Solo , Poluentes do Solo/análise , Verduras
12.
Microb Pathog ; 158: 105107, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34303810

RESUMO

Medicinal and aromatic higher plants are sustainable resources for natural product compounds, including essential oils, phenolics, flavonoids, alkaloids, glycosides, and saponins. Extractives and essential oils as well as their bioactive compounds have many uses due to their antimicrobial, anticancer, and antioxidant properties as well as application in food preservation. These natural compounds have been reported in many works, for instance biofungicide with phenolic and flavonoid compounds being effective against mold that causes discoloration of wood. Additionally, the natural extracts from higher plants can be used to mediate the synthesis of nanoparticle materials. Therefore, in this review, we aim to promote and declare the use of natural products as environmentally eco-friendly bio-agents against certain pathogenic microbes and make recommendations to overcome the extensive uses of conventional pesticides and other preservatives.


Assuntos
Anti-Infecciosos , Nanopartículas Metálicas , Óleos Voláteis , Antibacterianos , Anti-Infecciosos/farmacologia , Antioxidantes , Extratos Vegetais/farmacologia
13.
Physiol Plant ; 173(1): 276-286, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33826752

RESUMO

In this study, we have explored the possible role of ascorbic acid (ASC) and glutathione (GSH) in alleviating arsenate (AsV ) toxicity in brinjal roots. Moreover, we have also focused our attention on the possible involvement of endogenous nitric oxide (NO) in accomplishing this task. AsV treatment negatively impacts the length and fresh weight of roots and shoots as well as the dry weight and fitness of roots, and this was accompanied by greater As accumulation in roots and shoots of brinjal. AsV treatment also declined the endogenous NO level by inhibiting Nitric Oxide Synthase-like (NOS-like) activity. Furthermore, AsV stimulated oxidative stress markers, caused protein damage by their carbonylation due to downregulation in antioxidants [particularly ascorbate (AsA)-GSH cycle], leading to disturbed cellular redox status. This, collectively, led to root cell death in brinjal. However, the addition of either ASC or GSH rescued brinjal roots from the toxic effects of AsV in. Interestingly, lycorine (an inhibitor of ASC biosynthesis) further increased AsV toxicity, while ASC rescued its effects. Moreover, buthionine sulphoximine (BSO, an inhibitor of GSH biosynthesis) interestingly increased further AsV toxicity, while GSH rescued the plant from the As toxic effects. An interesting notion of this study was that GSH rescued the toxic effect of lycorine, while ASC rescued the toxic effect of BSO, though the AsV toxicity mediated by either ASC or GSH was always accompanied by high endogenous NO level and NOS-like activity. All together, these results suggest that ASC and GSH independently mitigate AsV toxicity in brinjal roots, but both might be dependent on endogenous NO for accomplishing the AsV toxicity alleviatory tasks.


Assuntos
Glutationa , Solanum melongena , Antioxidantes , Arseniatos/toxicidade , Ácido Ascórbico , Glutationa/metabolismo , Óxido Nítrico , Estresse Oxidativo , Raízes de Plantas/metabolismo
14.
Physiol Plant ; 173(1): 45-57, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32656764

RESUMO

Metal toxicity in crop plants is a matter of scientific concern. Therefore, in recent years efforts have been made to minimize metal toxicity in crop plants. Out of various strategies, priming of seedlings with certain chemicals, like e.g. donors of signaling molecules, nutrients, metabolites or plant hormones has shown encouraging results. However, mechanisms related with the priming-induced mitigation of metal toxicity are still poorly known. Hence, we have tested the potential of 2-oxoglutarate (2-OG) priming in enhancing the arsenate (AsV ) toxicity tolerance in tomato seedlings along with deciphering the probable role of nitric oxide (NO) in accomplishing this task. Arsenate decreased growth, endogenous NO and nitric oxide synthase-like activity but enhanced the accumulation of As, which collectively led to root cell death. Arsenate toxicity also decreased some photosynthetic characteristics (i.e. Fv /Fm, qP, Fv /F0 and Fm /F0 , and total chlorophyll content) but enhanced NPQ. However, priming with 2-OG alleviated the toxic effect of AsV on growth, endogenous NO, cell death and photosynthesis. Moreover, arsenate inhibited the activities of enzymes of nitrogen metabolism (i.e. nitrate reductase, nitrite reductase, glutamine synthetase and glutamine 2-oxoglutarate aminotransferase) but increased the activity of glutamate dehydrogenase and NH4 + content. Superoxide radicals, hydrogen peroxide, lipid peroxidation, protein oxidation and membrane damage increased upon AsV exposure, but the antioxidant enzymes (i.e. superoxide dismutase, catalase and glutathione-S-transferase) showed differential responses. Overall, our results showed that 2-OG is capable of alleviating AsV toxicity in tomato seedlings but the involvement of endogenous NO is probably required.


Assuntos
Arsênio , Solanum lycopersicum , Antioxidantes , Ácidos Cetoglutáricos , Óxido Nítrico , Estresse Oxidativo , Fotossíntese , Plântula
15.
Plant Cell Rep ; 40(8): 1543-1564, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34142217

RESUMO

KEY MESSAGE: Exogenous potassium (K+) and endogenous hydrogen sulfide (H2S) synergistically alleviate drought stress through regulating H+-ATPase activity, sugar metabolism and redox homoeostasis in tomato seedlings. Present work evaluates the role of K+ in the regulation of endogenous H2S signaling in modulating the tolerance of tomato (Solanum lycopersicum L. Mill.) seedlings to drought stress. The findings reveal that exposure of seedlings to 15% (w/v) polyethylene glycol 8000 (PEG) led to a substantial decrease in leaf K+ content which was associated with reduced H+-ATPase activity. Treatment with sodium orthovanadate (SOV, PM H+-ATPase inhibitor) and tetraethylammonium chloride (TEA, K+ channel blocker) suggests that exogenous K+ stimulated H+-ATPase activity that further regulated endogenous K+ content in tomato seedlings subjected to drought stress. Moreover, reduction in H+-ATPase activity by hypotaurine (HT; H2S scavenger) substantiates the role of endogenous H2S in the regulation of H+-ATPase activity. Elevation in endogenous K+ content enhanced the biosynthesis of H2S through enhancing the synthesis of cysteine, the H2S precursor. Synergistic action of H2S and K+ effectively neutralized drought stress by regulating sugar metabolism and redox homoeostasis that resulted in osmotic adjustment, as witnessed by reduced water loss, and improved hydration level of the stressed seedlings. The integrative role of endogenous H2S in K+ homeostasis was validated using HT and TEA which weakened the protection against drought stress induced impairments. In conclusion, exogenous K+ and endogenous H2S regulate H+-ATPase activity which plays a decisive role in the maintenance of endogenous K+ homeostasis. Thus, present work reveals that K+ and H2S crosstalk is essential for modulation of drought stress tolerance in tomato seedlings.


Assuntos
Antioxidantes/metabolismo , Desidratação , Sulfeto de Hidrogênio/metabolismo , Potássio/metabolismo , Solanum lycopersicum/fisiologia , Anidrases Carbônicas/metabolismo , Clorofila/metabolismo , Secas , Enzimas/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Plântula/fisiologia , Açúcares/metabolismo
16.
Nitric Oxide ; 94: 95-107, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31707015

RESUMO

Despite numerous reports on the role of nitric oxide (NO) in regulating plants growth and mitigating different environmental stresses, its participation in sulfur (S) -metabolism remains largely unknown. Therefore, we studied the role of NO in S acquisition and S-assimilation in tomato seedlings under low S-stress conditions by supplying NO to the leaves of S-sufficient and S-deficient seedlings. S-starved plants exhibited a substantial decreased in plant growth attributes, photosynthetic pigment chlorophyll (Chl) and other photosynthetic parameters, and activity of enzymes involved in Chl biosynthesis (δ-aminolevulinic acid dehydratase), and photosynthetic processes (carbonic anhydrase and RuBisco). Also, S-deficiency enhanced reactive oxygen species (ROS) (superoxide and hydrogen peroxide) and lipid peroxidation (malondialdehyde) levels in tomato seedlings. Contrarily, foliar supplementation of NO to S-deficient seedlings resulted in considerably reduced ROS formation in leaves and roots, which alleviated low S-stress-induced lipid peroxidation. However, exogenous NO enhanced proline accumulation by increasing proline metabolizing enzyme (Δ1-pyrroline-5-carboxylate synthetase) activity and also increased NO, hydrogen sulfide (a gasotransmitter small signaling molecule) and S uptake, and content of S-containing compounds (cysteine and reduced glutathione). Under S-limited conditions, NO improved S utilization efficiency of plants by upregulating the activity of S-assimilating enzymes (ATP sulfurylase, adenosine 5-phosphosulfate reductase, sulfide reductase and O-acetylserine (thiol) lyase). Under S-deprived conditions, improved S-assimilation of seedlings receiving NO resulted in improved redox homeostasis and ascorbate content through increased NO and S uptake. Application of 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy l-3-oxide (an NO scavenger) invalidated the effect of NO and again caused low S-stress-induced oxidative damage, confirming the beneficial role of NO in seedlings under S-deprived conditions. Thus, exogenous NO enhanced the tolerance of tomato seedlings to limit S-triggered oxidative stress and improved photosynthetic performance and S assimilation.


Assuntos
Óxido Nítrico/farmacologia , Plântula/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Enxofre/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Enxofre/deficiência
17.
Fish Shellfish Immunol ; 106: 44-55, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32739532

RESUMO

Aqueous and ethanolic extracts of drumstick, Moringa oleifera, leaves were evaluated in vitro to ascertain their principal active components and determine their immunostimulant, cytotoxic, antitumoral, bactericidal and antioxidant activities. Phytochemical screening of M. oleifera leaf extracts showed a greater abundance of phenolic and cyanogenic glycosides in aqueous than in ethanolic extracts, characterized by several flavonoids, condensed tannins and saponins. No significant effects on gilthead seabream (Sparus aurata) head-kidney leucocyte activities (phagocytic ability and capacity, respiratory burst and peroxidase) were detected after incubation for 24 h with different concentrations (0.001/1 mg mL-1) of either extract. In addition, the aqueous extract showed a marked cytotoxic effect on both SAF-1 (at doses above 0.01 mg mL-1) and PLHC-1 (at doses above 0.25 mg mL-1) cell lines. The ethanolic extract improved the viability of SAF-1 cells and decreased the viability of PLHC-1 cells when used at higher concentrations. Both the ethanolic and, particularly, the aqueous extracts showed significant bactericidal activity on pathogenic Vibrio anguillarum and Photobacterium damselae strains. The antiradical activity of M. oleifera, as determined by the ABTS assay, increased in a linear dose-response with increasing extract concentrations. The results as a whole for the cytotoxic, bactericidal and antioxidant activities of M. oleifera leaf extracts point to their possible use as additives in functional diets for farmed fish.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/metabolismo , Citotoxinas/toxicidade , Leucócitos/efeitos dos fármacos , Moringa oleifera/química , Dourada/imunologia , Animais , Rim Cefálico/efeitos dos fármacos , Técnicas In Vitro , Photobacterium/efeitos dos fármacos , Extratos Vegetais/farmacologia , Folhas de Planta/química , Vibrio/efeitos dos fármacos
18.
Ecotoxicol Environ Saf ; 201: 110822, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32534334

RESUMO

Boron (B) toxicity is an important abiotic constraint that limits crop productivity mainly in arid and semi-arid areas of the world. High levels of B in soil disturbs several physiological and biochemical processes in plant. The aim of this study was to investigate the function of melatonin (Mel) in the regulation of carbohydrate and proline (Pro) metabolism, photosynthesis process and antioxidant system of wheat seedlings under B toxicity conditions. High levels of B inhibited net photosynthetic rate (PN), stomatal conductance (gs), content of chlorophyll (Chl) a, b, δ-aminolevulinic acid (δ-ALA), nitrogen (N) and phosphorus (P), and increased accumulation of B, Chl degradation and activity of chlorophyllase (Chlase; a Chl degrading enzyme), and downregulated the activity of enzymes (δ-ALAD; δ-aminolevulinic acid dehydratase) involved in the biosynthesis of photosynthesis pigments, photosynthesis (carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase) and carbohydrate metabolism (cell wall invertase, CWI) in wheat seedlings. Also, high levels of B caused oxidative damage by increasing the content of malondialdehyde, superoxide anion and H2O2, and activity of glycolate oxidase (an H2O2-producing enzyme) in leaves of seedlings. However, foliar application of Mel significantly improved photosynthetic pigments concentration by increasing δ-ALA, δ-ALAD and decreasing Chl degradation and Chlase activity and led to an increase of plant growth attributes under both B toxicity and non-toxicity conditions. Under normal and B toxicity conditions, exogenous Mel also improved content of N, P, total soluble carbohydrates (TSCs) and Pro, and upregulated activity of CWI and Δ1-pyrroline-5-carboxylate synthetase. Mel significantly suppressed the adverse effects of excess B by alleviating cellular oxidative damage through enhanced reactive oxygen species scavenging by superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and lipoxygenase, and content of total phenolic compounds (TPC), ascorbate and reduced glutathione. These results postulate that Mel induced plant defense mechanisms by enhancing Pro, TSCs, TPC, nutrients (N and P) uptake and enzymatic and non-enzymatic antioxidants.


Assuntos
Antioxidantes/metabolismo , Boro/toxicidade , Melatonina/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Triticum/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/metabolismo
19.
Ecotoxicol Environ Saf ; 190: 110152, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31927357

RESUMO

Nano-titanium dioxide (nTiO2) has been reported to improve tolerance of plants against different environmental stresses by modulating various physiological and biochemical processes. Nitric oxide (NO) has been shown to act as an important stress signaling molecule during plant responses to abiotic stresses. The present work was planned to investigate the involvement of endogenous NO in nTiO2-induced activation of defense system of fava bean (Vicia faba L.) plants under water-deficit stress (WDS) conditions. Water-suffered plants showed increased concentration of hydrogen peroxide (H2O2) and superoxide (O2-) content coupled with increased electrolyte leakage and lipid peroxidation which adversely affected nitrate reductase (NR) activity, chlorophyll content and growth of the plants. However, application of 15 mg L-1 nTiO2 to stressed plants significantly induced NR activity and synthesis of NO which elevated enzymatic and non-enzymatic defense system of the stressed plants and suppressed the generation of H2O2 and O2- content, leakage of electrolytes, and lipid peroxidation. Application of nTiO2, in association with NO, also enhanced the accumulation of osmolytes (proline and glycine betaine) that assisted the stressed plants in osmotic adjustment as witnessed by improved hydration level of the plants. Involvement of NO in nTiO2-induced activation of defense system was confirmed with NO scavenger cPTIO [2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide] which caused recurrence of WDS.


Assuntos
Desidratação , Nanopartículas/toxicidade , Óxido Nítrico/metabolismo , Estresse Fisiológico , Titânio/toxicidade , Vicia faba/efeitos dos fármacos , Clorofila/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidação de Lipídeos , Superóxidos/metabolismo , Vicia faba/metabolismo
20.
Molecules ; 25(10)2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32438754

RESUMO

In the present study, the enhancement of the production of Origanum majorana essential oils (EOs) was studied by treating plants with ascorbic acid (AA) and tryptophan (Trp) at concentrations of 100, 200 and 300 mg/L and Moringa oleifera leaf extract (MLE) at 2.5%, 5% and 10% as foliar applications during the seasons 2018-2019. The toxicities of the EOs were assayed against four seed-borne fungi (Bipolaris orzyae, Curvularia lunata, Fusarium verticilliodies and F. graminearum) isolated from rice grains (Oryzae sativa). Vegetative growth parameters and EO production were enhanced by the application of AA, Trp and MLE in both seasons. Analysis of the EOs by Gas chromatography-mass spectrometry (GC-MS) showed that the main chemical constituents were terpineol (cis-ß-(1-terpinenol)), terpinen-4-ol, 4-thujanol (sabinene hydrate), α-terpineol, cymene and sabinene. The highest fungal mycelial growth inhibition (FMGI) percentages against F. verticilliodies were 94.57% and 92.63% as MLE at 5% and 10%, respectively, was applied to plants and 85.60% and 82.19% against F. graminearum as Trp was applied to plants at 300 and 200 mg/L, respectively. EOs from the treated plant with MLE (10%) observed the highest FMGI (84.46%) against B. oryzae, and EOs from plants treated with AA as foliar application at 300 and 200 mg/L showed the highest FMGI values of 81.11% and 81.85%, respectively, against the growth of C. lunata. Application of EOs extracted from plants treated with Trp, AA and MLE at 300 mg/L, 300 mg/L and 10%, respectively, or untreated plants to rice seeds inhibited or decreased the fungal infection percentage from 82.5% (naturally infected grains) to 1.75%, 10.5%, 17.5% and 18.5%, respectively. In conclusion, the extracted EOs affected by the foliar application of O. majorana plants with Trp, AA, and MLE could be useful as a biofungicide against rice seed-borne fungi.


Assuntos
Micoses/prevenção & controle , Óleos Voláteis/farmacologia , Origanum/química , Oryza/efeitos dos fármacos , Antifúngicos/química , Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Fungos/patogenicidade , Fusarium/efeitos dos fármacos , Fusarium/patogenicidade , Cromatografia Gasosa-Espectrometria de Massas , Testes de Sensibilidade Microbiana , Micoses/microbiologia , Óleos Voláteis/química , Oryza/crescimento & desenvolvimento , Oryza/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Óleos de Plantas/química , Óleos de Plantas/farmacologia , Sementes/microbiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa