Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 20(2): 1018-1022, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31891509

RESUMO

Single-photon emitters based on individual atoms or individual atomic-like defects are highly sought-after components for future quantum technologies. A key challenge in this field is how to isolate just one such emitter; the best approaches still have an active emitter yield of only 50% so that deterministic integration of single active emitters is not yet possible. Here, we demonstrate the ability to isolate individual erbium emitters embedded in 20 nm nanocrystals of NaYF4 using plasmonic aperture optical tweezers. The optical tweezers capture the nanocrystal, whereas the plasmonic aperture enhances the emission of the Er and allows the measurement of discrete emission rate values corresponding to different numbers of erbium ions. Three separate synthesis runs show near-Poissonian distribution in the discrete levels of emission yield that correspond to the expected ion concentrations, indicating that the yield of active emitters is approximately 80%. Fortunately, the trap allows for selecting the nanocrystals with only a single emitter, and so this gives a route to isolating and integrating single emitters in a deterministic way. This demonstration is a promising step toward single-photon quantum information technologies that utilize single ions in a solid-state medium, particularly because Er emits in the low-loss fiber-optic 1550 nm telecom band.

2.
Opt Express ; 28(11): 16497-16510, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32549471

RESUMO

Upconverted light from nanostructured metal surfaces can be produced by harmonic generation and multi-photon luminescence; however, these are very weak processes and require extremely high field intensities to produce a measurable signal. Here we report on bright emission, 5 orders of magnitude greater than harmonic generation, that can be seen from metal tunnel junctions that we believe is due to light-induced inelastic tunneling emission. Like inelastic tunneling light emission, which was recently reported to have 2% conversion efficiency per tunneling event, the emission wavelength recorded varies with the local electric field applied; however, here the field is from a 1560 nm femtosecond pulsed laser source. Finite-difference time-domain simulations of the experimental conditions show the local field is sufficient to generate tunneling-based inelastic light emission in the visible regime. This phenomenon is promising for producing ultrafast upconverted light emission with higher efficiency than conventional nonlinear processes.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa