Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Chem Inf Model ; 63(11): 3601-3613, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37227780

RESUMO

The SARS-CoV-2 main protease (Mpro) is a crucial enzyme for viral replication and has been considered an attractive drug target for the treatment of COVID-19. In this study, virtual screening techniques and in vitro assays were combined to identify novel Mpro inhibitors starting from around 8000 FDA-approved drugs. The docking analysis highlighted 17 promising best hits, biologically characterized in terms of their Mpro inhibitory activity. Among them, 7 cephalosporins and the oral anticoagulant betrixaban were able to block the enzyme activity in the micromolar range with no cytotoxic effect at the highest concentration tested. After the evaluation of the degree of conservation of Mpro residues involved in the binding with the studied ligands, the ligands' activity on SARS-CoV-2 replication was assessed. The ability of betrixaban to affect SARS-CoV-2 replication associated to its antithrombotic effect could pave the way for its possible use in the treatment of hospitalized COVID-19 patients.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/química , Reposicionamento de Medicamentos , Ligantes , Inibidores de Proteases/farmacologia , Inibidores de Proteases/química , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
2.
Methods ; 201: 74-81, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34000391

RESUMO

Droplet digital PCR is an innovative and promising approach for highly sensitive quantification of nucleic acids that is being increasingly used in the field of clinical virology, including the setting of hepatitis B virus (HBV). Here, we comprehensively report a robust and reproducible ddPCR assay for the highly sensitive quantification of serum HBV-DNA. The assay showed a limit of detection of 4 copies/ml (<1IU/ml) by Probit analysis, showed a good linearity (R2 = 0.94) and a high intra- and inter-run reproducibility with differences between the values obtained in the same run or in two independent runs never exceeding 0.14logcopies/mL and 0.21logcopies/mL, respectively. By analysing serum samples from chronically HBV infected patients (mostly under antiviral treatment), ddPCR successfully quantified serum HBV-DNA in 89.8% of patients with detectable serum HBV-DNA < 20 IU/mL [equivalent to <112copies/ml] by classical Real-Time PCR assay, with a median (IQR) of 8(5-14)IU/mL [45(28-78)copies/ml], and in 66.7% of patients with undetectable serum HBV-DNA, with a median (IQR) of 5(4-9)IU/mL [28(20-50)copies/ml]. Similarly, by analysing serum samples from patients with a serological profile compatible with occult HBV infection (anti-HBc+/HBsAg-), ddPCR successfully quantified serum HBV-DNA in 40% of patients with a median (IQR) value of 1(1-2)IU/mL [5(5-11)copies/ml], in line with the extremely limited viral replication typically observed in occult HBV infection. Overall, the availability of assays for the highly sensitive quantification of serum HBV-DNA can provide an added value in optimizing the diagnosis of occult hepatitis B infection, improving the therapeutic management of chronically HBV infected patients, also in the light of innovative drugs (upcoming in clinical practise) aimed at achieving HBV functional cure.


Assuntos
Vírus da Hepatite B , Hepatite B Crônica , DNA Viral/genética , Vírus da Hepatite B/genética , Hepatite B Crônica/diagnóstico , Hepatite B Crônica/tratamento farmacológico , Hepatite B Crônica/genética , Humanos , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Int J Mol Sci ; 24(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36835503

RESUMO

The wide diversity of microbiota at the genera and species levels across sites and individuals is related to various causes and the observed differences between individuals. Efforts are underway to further understand and characterize the human-associated microbiota and its microbiome. Using 16S rDNA as a genetic marker for bacterial identification improved the detection and profiling of qualitative and quantitative changes within a bacterial population. In this light, this review provides a comprehensive overview of the basic concepts and clinical applications of the respiratory microbiome, alongside an in-depth explanation of the molecular targets and the potential relationship between the respiratory microbiome and respiratory disease pathogenesis. The paucity of robust evidence supporting the correlation between the respiratory microbiome and disease pathogenesis is currently the main challenge for not considering the microbiome as a novel druggable target for therapeutic intervention. Therefore, further studies are needed, especially prospective studies, to identify other drivers of microbiome diversity and to better understand the changes in the lung microbiome along with the potential association with disease and medications. Thus, finding a therapeutic target and unfolding its clinical significance would be crucial.


Assuntos
Microbiota , Medicina de Precisão , Humanos , Estudos Prospectivos , Pulmão/microbiologia , Microbiota/genética , Bactérias/genética
4.
Molecules ; 27(21)2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36364347

RESUMO

The SARS-CoV-2 non-structural protein 13 (nsp13) helicase is an essential enzyme for viral replication and has been identified as an attractive target for the development of new antiviral drugs. In detail, the helicase catalyzes the unwinding of double-stranded DNA or RNA in a 5' to 3' direction and acts in concert with the replication-transcription complex (nsp7/nsp8/nsp12). In this work, bioinformatics and computational tools allowed us to perform a detailed conservation analysis of the SARS-CoV-2 helicase genome and to further predict the druggable enzyme's binding pockets. Thus, a structure-based virtual screening was used to identify valuable compounds that are capable of recognizing multiple nsp13 pockets. Starting from a database of around 4000 drugs already approved by the Food and Drug Administration (FDA), we chose 14 shared compounds capable of recognizing three out of four sites. Finally, by means of visual inspection analysis and based on their commercial availability, five promising compounds were submitted to in vitro assays. Among them, PF-03715455 was able to block both the unwinding and NTPase activities of nsp13 in a micromolar range.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Humanos , Reposicionamento de Medicamentos , RNA Helicases/metabolismo , Proteínas não Estruturais Virais/metabolismo , DNA Helicases/metabolismo , Antivirais/farmacologia
5.
J Antimicrob Chemother ; 76(2): 396-412, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33254234

RESUMO

OBJECTIVES: To define key genetic elements, single or in clusters, underlying SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) evolutionary diversification across continents, and their impact on drug-binding affinity and viral antigenicity. METHODS: A total of 12 150 SARS-CoV-2 sequences (publicly available) from 69 countries were analysed. Mutational clusters were assessed by hierarchical clustering. Structure-based virtual screening (SBVS) was used to select the best inhibitors of 3-chymotrypsin-like protease (3CL-Pr) and RNA-dependent RNA polymerase (RdRp) among the FDA-approved drugs and to evaluate the impact of mutations on binding affinity of these drugs. The impact of mutations on epitope recognition was predicted following Grifoni et al. (Cell Host Microbe 2020. 27: 671-80.). RESULTS: Thirty-five key mutations were identified (prevalence: ≥0.5%), residing in different viral proteins. Sixteen out of 35 formed tight clusters involving multiple SARS-CoV-2 proteins, highlighting intergenic co-evolution. Some clusters (including D614GSpike + P323LRdRp + R203KN + G204RN) occurred in all continents, while others showed a geographically restricted circulation (T1198KPL-Pr + P13LN + A97VRdRp in Asia, L84SORF-8 + S197LN in Europe, Y541CHel + H504CHel + L84SORF-8 in America and Oceania). SBVS identified 20 best RdRp inhibitors and 21 best 3CL-Pr inhibitors belonging to different drug classes. Notably, mutations in RdRp or 3CL-Pr modulate, positively or negatively, the binding affinity of these drugs. Among them, P323LRdRp (prevalence: 61.9%) reduced the binding affinity of specific compounds including remdesivir while it increased the binding affinity of the purine analogues penciclovir and tenofovir, suggesting potential hypersusceptibility. Finally, specific mutations (including Y541CHel + H504CHel) strongly hampered recognition of Class I/II epitopes, while D614GSpike profoundly altered the structural stability of a recently identified B cell epitope target of neutralizing antibodies (amino acids 592-620). CONCLUSIONS: Key genetic elements reflect geographically dependent SARS-CoV-2 genetic adaptation, and may play a potential role in modulating drug susceptibility and hampering viral antigenicity. Thus, a close monitoring of SARS-CoV-2 mutational patterns is crucial to ensure the effectiveness of treatments and vaccines worldwide.


Assuntos
Adaptação Biológica/genética , Antivirais/metabolismo , COVID-19/imunologia , Proteases 3C de Coronavírus/genética , Inibidores de Protease de Coronavírus/metabolismo , RNA-Polimerase RNA-Dependente de Coronavírus/genética , SARS-CoV-2/genética , América , Sequência de Aminoácidos , Antígenos Virais/sangue , Antivirais/uso terapêutico , Ásia , COVID-19/epidemiologia , Simulação por Computador , Proteases 3C de Coronavírus/metabolismo , Inibidores de Protease de Coronavírus/uso terapêutico , RNA-Polimerase RNA-Dependente de Coronavírus/metabolismo , Europa (Continente) , Evolução Molecular , Humanos , Simulação de Acoplamento Molecular , Família Multigênica , Mutação/genética , Taxa de Mutação , Oceania , Ligação Proteica , SARS-CoV-2/enzimologia , Topografia Médica , Tratamento Farmacológico da COVID-19
6.
Drug Resist Updat ; 53: 100721, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33132205

RESUMO

Coronaviridae is a peculiar viral family, with a very large RNA genome and characteristic appearance, endowed with remarkable tendency to transfer from animals to humans. Since the beginning of the 21st century, three highly transmissible and pathogenic coronaviruses have crossed the species barrier and caused deadly pneumonia, inflicting severe outbreaks and causing human health emergencies of inconceivable magnitude. Indeed, in the past two decades, two human coronaviruses emerged causing serious respiratory illness: severe acute respiratory syndrome coronavirus (SARS-CoV-1) and Middle Eastern respiratory syndrome coronavirus (MERS-CoV), causing more than 10,000 cumulative cases, with mortality rates of 10 % for SARS-CoV-1 and 34.4 % for MERS-CoV. More recently, the severe acute respiratory syndrome coronavirus virus 2 (SARS-CoV-2) has emerged in China and has been identified as the etiological agent of the recent COVID-19 pandemic outbreak. It has rapidly spread throughout the world, causing nearly 22 million cases and ∼ 770,000 deaths worldwide, with an estimated mortality rate of ∼3.6 %, hence posing serious challenges for adequate and effective prevention and treatment. Currently, with the exception of the nucleotide analogue prodrug remdesivir, and despite several efforts, there is no known specific, proven, pharmacological treatment capable of efficiently and rapidly inducing viral containment and clearance of SARS-CoV-2 infection as well as no broad-spectrum drug for other human pathogenic coronaviruses. Another confounding factor is the paucity of molecular information regarding the tendency of coronaviruses to acquire drug resistance, a gap that should be filled in order to optimize the efficacy of antiviral drugs. In this light, the present review provides a systematic update on the current knowledge of the marked global efforts towards the development of antiviral strategies aimed at coping with the infection sustained by SARS-CoV-2 and other human pathogenic coronaviruses, displaying drug resistance profiles. The attention has been focused on antiviral drugs mainly targeting viral protease, RNA polymerase and spike glycoprotein, that have been tested in vitro and/or in clinical trials as well as on promising compounds proven to be active against coronaviruses by an in silico drug repurposing approach. In this respect, novel insights on compounds, identified by structure-based virtual screening on the DrugBank database endowed by multi-targeting profile, are also reported. We specifically identified 14 promising compounds characterized by a good in silico binding affinity towards, at least, two of the four studied targets (viral and host proteins). Among which, ceftolozane and NADH showed the best multi-targeting profile, thus potentially reducing the emergence of resistant virus strains. We also focused on potentially novel pharmacological targets for the development of compounds with anti-pan coronavirus activity. Through the analysis of a large set of viral genomic sequences, the current review provides a comprehensive and specific map of conserved regions across human coronavirus proteins which are essential for virus replication and thus with no or very limited tendency to mutate. Hence, these represent key druggable targets for novel compounds against this virus family. In this respect, the identification of highly effective and innovative pharmacological strategies is of paramount importance for the treatment and/or prophylaxis of the current pandemic but potentially also for future and unavoidable outbreaks of human pathogenic coronaviruses.


Assuntos
Antivirais/administração & dosagem , Infecções por Coronavirus/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , SARS-CoV-2/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Antivirais/química , Antivirais/metabolismo , COVID-19/metabolismo , Infecções por Coronavirus/metabolismo , Sistemas de Liberação de Medicamentos/tendências , Humanos , Inibidores de Proteases/administração & dosagem , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Inibidores da Transcriptase Reversa/administração & dosagem , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/metabolismo , SARS-CoV-2/metabolismo , Tratamento Farmacológico da COVID-19
7.
Artigo em Inglês | MEDLINE | ID: mdl-38684560

RESUMO

PURPOSE: This research endeavors to improve tumor localization in minimally invasive surgeries, a challenging task primarily attributable to the absence of tactile feedback and limited visibility. The conventional solution uses laparoscopic ultrasound (LUS) which has a long learning curve and is operator-dependent. METHODS: The proposed approach involves augmenting LUS images onto laparoscopic images to improve the surgeon's ability to estimate tumor and internal organ anatomy. This augmentation relies on LUS pose estimation and filtering. RESULTS: Experiments conducted with clinical data exhibit successful outcomes in both the registration and augmentation of LUS images onto laparoscopic images. Additionally, noteworthy results are observed in filtering, leading to reduced flickering in augmentations. CONCLUSION: The outcomes reveal promising results, suggesting the potential of LUS augmentation in surgical images to assist surgeons and serve as a training tool. We have used the LUS probe's shaft to disambiguate the rotational symmetry. However, in the long run, it would be desirable to find more convenient solutions.

8.
J Pers Med ; 13(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37109063

RESUMO

Asthma and COPD have characteristic symptoms, yet patients with both are prevalent. Despite this, there is currently no globally accepted definition for the overlap between asthma and COPD, commonly referred to as asthma-COPD overlap (ACO). Generally, ACO is not considered a distinct disease or symptom from either clinical or mechanistic perspectives. However, identifying patients who present with both conditions is crucial for guiding clinical therapy. Similar to asthma and COPD, ACO patients are heterogeneous and presumably have multiple underlying disease processes. The variability of ACO patients led to the establishment of multiple definitions describing the condition's essential clinical, physiological, and molecular characteristics. ACO comprises numerous phenotypes, which affects the optimal medication choice and can serve as a predictor of disease prognosis. Various phenotypes of ACO have been suggested based on host factors including but not limited to demographics, symptoms, spirometric findings, smoking history, and underlying airway inflammation. This review provides a comprehensive clinical guide for ACO patients to be used in clinical practice based on the available limited data. Future longitudinal studies must evaluate the stability of ACO phenotypes over time and explore their predictive powers to facilitate a more precise and effective management approach.

9.
Sci Rep ; 13(1): 18180, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875469

RESUMO

The multiple activities of neurons frequently generate several spiking-bursting variations observed within the neurological mechanism. We show that a discrete fractional-order activated nerve cell framework incorporating a Caputo-type fractional difference operator can be used to investigate the impacts of complex interactions on the surge-empowering capabilities noticed within our findings. The relevance of this expansion is based on the model's structure as well as the commensurate and incommensurate fractional-orders, which take kernel and inherited characteristics into account. We begin by providing data regarding the fluctuations in electronic operations using the fractional exponent. We investigate two-dimensional Morris-Lecar neuronal cell frameworks via spiked and saturated attributes, as well as mixed-mode oscillations and mixed-mode bursting oscillations of a decoupled fractional-order neuronal cell. The investigation proceeds by using a three-dimensional slow-fast Morris-Lecar simulation within the fractional context. The proposed method determines a method for describing multiple parallels within fractional and integer-order behaviour. We examine distinctive attribute environments where inactive status develops in detached neural networks using stability and bifurcation assessment. We demonstrate features that are in accordance with the analysis's findings. The Erdös-Rényi connection of asynchronization transformed neural networks (periodic and actionable) is subsequently assembled and paired via membranes that are under pressure. It is capable of generating multifaceted launching processes in which dormant neural networks begin to come under scrutiny. Additionally, we demonstrated that boosting connections can cause classification synchronization, allowing network devices to activate in conjunction in the future. We construct a reduced-order simulation constructed around clustering synchronisation that may represent the operations that comprise the whole system. Our findings indicate the influence of fractional-order is dependent on connections between neurons and the system's stored evidence. Moreover, the processes capture the consequences of fractional derivatives on surge regularity modification and enhance delays that happen across numerous time frames in neural processing.


Assuntos
Algoritmos , Redes Neurais de Computação , Simulação por Computador , Biofísica , Neurônios/fisiologia
10.
Emerg Microbes Infect ; 12(1): 2219347, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37288750

RESUMO

Specific HBsAg mutations are known to hamper HBsAg recognition by neutralizing antibodies thus challenging HBV-vaccination efficacy. Nevertheless, information on their impact and spreading over time is limited. Here, we characterize the circulation of vaccine-escape mutations from 2005 to 2019 and their correlation with virological parameters in a large cohort of patients infected with HBV genotype-D (N = 947), dominant in Europe. Overall, 17.7% of patients harbours ≥1 vaccine-escape mutation with the highest prevalence in subgenotype-D3. Notably, complex profiles (characterized by ≥2 vaccine-escape mutations) are revealed in 3.1% of patients with a prevalence rising from 0.4% in 2005-2009 to 3.0% in 2010-2014 and 5.1% in 2015-2019 (P = 0.007) (OR[95%CI]:11.04[1.42-85.58], P = 0.02, by multivariable-analysis). The presence of complex profiles correlates with lower HBsAg-levels (median[IQR]:40[0-2905]IU/mL for complex profiles vs 2078[115-6037]IU/ml and 1881[410-7622]IU/mL for single or no vaccine-escape mutation [P < 0.02]). Even more, the presence of complex profiles correlates with HBsAg-negativity despite HBV-DNA positivity (HBsAg-negativity in 34.8% with ≥2 vaccine-escape mutations vs 6.7% and 2.3% with a single or no vaccine-escape mutation, P < 0.007). These in-vivo findings are in keeping with our in-vitro results showing the ability of these mutations in hampering HBsAg secretion or HBsAg recognition by diagnostic antibodies. In conclusion, vaccine-escape mutations, single or in complex profiles, circulate in a not negligible fraction of HBV genotype-D infected patients with an increasing temporal trend, suggesting a progressive enrichment in the circulation of variants able to evade humoral responses. This should be considered for a proper clinical interpretation of HBsAg-results and for the development of novel vaccine formulations for prophylactic and therapeutic purposes.


Assuntos
Antígenos de Superfície da Hepatite B , Vírus da Hepatite B , Humanos , Antígenos de Superfície da Hepatite B/genética , Vacinas contra Hepatite B , Mutação , Vacinação , Genótipo , DNA Viral/genética
11.
J Med Chem ; 66(17): 12141-12162, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37646374

RESUMO

Pharmacological targeting of the dopamine D4 receptor (D4R)─expressed in brain regions that control cognition, attention, and decision-making─could be useful for several neuropsychiatric disorders including substance use disorders (SUDs). This study focused on the synthesis and evaluation of a novel series of benzothiazole analogues designed to target D4R. We identified several compounds with high D4R binding affinity (Ki ≤ 6.9 nM) and >91-fold selectivity over other D2-like receptors (D2R, D3R) with diverse partial agonist and antagonist profiles. Novel analogue 16f is a potent low-efficacy D4R partial agonist, metabolically stable in rat and human liver microsomes, and has excellent brain penetration in rats (AUCbrain/plasma > 3). 16f (5-30 mg/kg, i.p.) dose-dependently decreased iv cocaine self-administration in rats, consistent with previous results produced by D4R-selective antagonists. Off-target antagonism of 5-HT2A or 5-HT2B may also contribute to these effects. Results with 16f support further efforts to target D4R in SUD treatment.


Assuntos
Cocaína , Transtornos Relacionados ao Uso de Substâncias , Humanos , Animais , Ratos , Serotonina , Benzotiazóis/farmacologia , Benzotiazóis/uso terapêutico , Encéfalo , Cocaína/farmacologia
12.
J Surg Case Rep ; 2022(12): rjac594, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36601091

RESUMO

We present a case of an acquired deformity of the toes of a young patient with no previous pathologic or traumatic history. Later, it emerged that it was 'Focal Myositis' at the Flexor Digitorum Brevis muscle of the right foot. The clinical course of the case involved a hard painless mass at the muscle belly that increased in size very slowly over several years, causing flexion contracture of the third toe without an accompanying skin lesion.

13.
Heliyon ; 8(10): e11230, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36311372

RESUMO

In this paper, we introduce the concept of graded classical B-2-absorbing submodule as a generalization of graded classical 2-absorbing submodule and we give a number of results concerning such graded modules.

14.
Microorganisms ; 10(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36013977

RESUMO

The performance of diagnostic polymerase chain reaction (PCR) assays can be impacted by SARS-CoV-2 variability as this is dependent on the full complementarity between PCR primers/probes and viral target templates. Here, we investigate the genetic variability of SARS-CoV-2 regions recognized by primers/probes utilized by PCR diagnostic assays based on nucleotide mismatching analysis. We evaluated the genetic variation in the binding regions of 73 primers/probes targeting the Nucleocapsid (N, N = 36), Spike (S, N = 22), and RNA-dependent RNA-polymerase/Helicase (RdRp/Hel, N = 15) of the publicly available PCR-based assays. Over 4.9 million high-quality SARS-CoV-2 genome sequences were retrieved from GISAID and were divided into group-A (all except Omicron, >4.2 million) and group-B (only Omicron, >558 thousand). In group-A sequences, a large range of variability in primers/probes binding regions in most PCR assays was observed. Particularly, 87.7% (64/73) of primers/probes displayed ≥1 mismatch with their viral targets, while 8.2% (6/73) contained ≥2 mismatches and 2.7% (2/73) contained ≥3 mismatches. In group-B sequences, 32.9% (24/73) of primers/probes were characterized by ≥1 mismatch, 13.7% (10/73) by ≥2 mismatches, and 5.5% (4/73) by ≥3 mismatches. The high rate of single and multiple mismatches- found in the target regions of molecular assays used worldwide for SARS-CoV-2 diagnosis reinforces the need to optimize and constantly update these assays according to SARS-CoV-2 genetic evolution and the future emergence of novel variants.

15.
Expert Rev Respir Med ; 16(11-12): 1167-1190, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36440485

RESUMO

INTRODUCTION: Pneumocystis jirovecii is an opportunistic, human-specific fungus that causes Pneumocystis pneumonia (PCP). PCP symptoms are nonspecific. A patient with P. jirovecii and another lung infection faces a diagnostic challenge. It may be difficult to determine which of these agents is responsible for the clinical symptoms, preventing effective treatment. Diagnostic and treatment efforts have been made more difficult by the rising frequency with which coronavirus 2019 (COVID-19) and PCP co-occur. AREAS COVERED: Herein, we provide a comprehensive review of clinical and pharmacological recommendations along with a literature review of PCP in immunocompromised patients focusing on HIV-uninfected patients. EXPERT OPINION: PCP may be masked by identifying co-existing pathogens that are not necessarily responsible for the observed infection. Patients with severe form COVID-19 should be examined for underlying immunodeficiency, and co-infections must be considered as co-infection with P. jirovecii may worsen COVID-19's severity and fatality. PCP should be investigated in patients with PCP risk factors who come with pneumonia and suggestive radiographic symptoms but have not previously received PCP prophylaxis. PCP prophylaxis should be explored in individuals with various conditions that impair the immune system, depending on their PCP risk.


Assuntos
COVID-19 , Infecções por HIV , Pneumocystis carinii , Pneumonia por Pneumocystis , Humanos , Pneumonia por Pneumocystis/complicações , Pneumonia por Pneumocystis/diagnóstico , Pneumonia por Pneumocystis/tratamento farmacológico , COVID-19/complicações , Hospedeiro Imunocomprometido , Infecções por HIV/complicações
16.
Microorganisms ; 10(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35208724

RESUMO

Herein, we report a case of an Italian male infected by Delta sublineage AY.4 harboring an atypical deletion, leading to a N gene target failure (NGTF) by a commercial molecular assay for SARS-CoV-2 diagnosis (AllplexTM SARS-CoV-2 Assay, Seegene). A 59-year-old unvaccinated patient was hospitalized for pulmonary embolism, with first negative results obtained by both molecular and antigen tests. After several days of viral negativity, he presented positive results for E and RdRP/S genes, but negative in N gene. Negativity in N gene was repeatedly confirmed in the following days. Suspecting an infection by the Omicron variant, SARS-CoV-2 genome sequencing was rapidly performed from nasopharyngeal swab by MiSeq and revealed the presence of the Delta sublineage AY.4 variant with an atypical deletion of six nucleotides, leading to G214-G215 deletion in the Nucleocapsid, thus responsible for NGTF. The analysis of GISAID sequences (N = 2,618,373 12 January 2022) showed that G214-G215 deletion is rarely occurring in most circulating Delta lineages and sublineages in the globe and Europe, with an overall prevalence never exceeding 0.2%. Hence, this study highlights the importance to perform SARS-CoV-2 sequencing and to characterize novel mutations/deletions that could jeopardize the proper interpretation of molecular diagnostic tests. Based on these assumptions, the role of deletions in the recently identified Omicron variant deserves further investigation.

17.
Microbiol Spectr ; 10(2): e0273221, 2022 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-35352942

RESUMO

The process of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genetic diversification is still ongoing and has very recently led to the emergence of a new variant of concern (VOC), defined as Omicron or B.1.1.529. Omicron VOC is the most divergent variant identified so far and has generated immediate concern for its potential capability to increase SARS-CoV-2 transmissibility and, more worryingly, to escape therapeutic and vaccine-induced antibodies. Nevertheless, a clear definition of the Omicron VOC mutational spectrum is still missing. Herein, we provide a comprehensive definition and functional characterization (in terms of infectivity and/or antigenicity) of mutations characterizing the Omicron VOC. In particular, 887,475 SARS-CoV-2 Omicron VOC whole-genome sequences were retrieved from the GISAID database and used to precisely define its specific patterns of mutations across the different viral proteins. In addition, the functional characterization of Omicron VOC spike mutations was finely discussed according to published manuscripts. Lastly, residues characterizing the Omicron VOC and the previous four VOCs (Alpha, Beta, Gamma, and Delta) were mapped on the three-dimensional structure of the SARS-CoV-2 spike protein to assess their localization in the different spike domains. Overall, our study will assist with deciphering the Omicron VOC mutational profile and will shed more light on its clinical implications. This is critical considering that Omicron VOC is currently the predominant variant worldwide. IMPORTANCE The Omicron variant of concern (VOC) has a peculiar spectrum of mutations characterized by the acquisition of mutations or deletions rarely detected in previously identified variants, particularly in the spike glycoprotein. Such mutations, mostly residing in the receptor-binding domain, could play a pivotal role in enhancing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infectivity (by increasing binding affinity for ACE2), jeopardizing spike recognition by therapeutic and vaccine-induced antibodies and causing diagnostic assay failure. To our knowledge, this is one of the first exhaustive descriptions of newly emerged mutations underlying the Omicron VOC and its biological and clinical implications.


Assuntos
COVID-19 , Vacinas , Humanos , Mutação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus
18.
Biomedicines ; 10(2)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35203653

RESUMO

The role of novel HBV markers in predicting Hepatitis B virus reactivation (HBV-R) in HBsAg-negative/anti-HBc-positive oncohaematological patients was examined. One hundred and seven HBsAg-negative/anti-HBc-positive oncohaematological patients, receiving anti-HBV prophylaxis for >18 months, were included. At baseline, all patients had undetectable HBV DNA, and 67.3% were anti-HBs positive. HBV-R occurred in 17 (15.9%) patients: 6 during and 11 after the prophylaxis period. At HBV-R, the median (IQR) HBV-DNA was 44 (27-40509) IU/mL, and the alanine aminotransferase upper limit of normal (ULN) was 44% (median (IQR): 81 (49-541) U/L). An anti-HBc > 3 cut-off index (COI) plus anti-HBs persistently/declining to <50 mIU/mL was predictive for HBV-R (OR (95% CI): 9.1 (2.7-30.2); 63% of patients with vs. 15% without this combination experienced HBV-R (p < 0.001)). The detection of highly sensitive (HS) HBsAg and/or HBV-DNA confirmed at >2 time points, also predicts HBV-R (OR (95% CI): 13.8 (3.6-52.6); 50% of positive vs. 7% of negative patients to these markers experienced HBV-R (p = 0.001)). HS-HBs and anti-HBc titration proved to be useful early markers of HBV-R. The use of these markers demonstrated that HBV-R frequently occurs in oncohaematological patients with signs of resolved HBV infection, raising issues of proper HBV-R monitoring.

19.
Microbiol Spectr ; 9(3): e0109621, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34787497

RESUMO

Since the beginning of the coronavirus disease 2019 (COVID-19) pandemic caused by it, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been undergoing a genetic diversification leading to the emergence of new variants. Nevertheless, a clear definition of the genetic signatures underlying the circulating variants is still missing. Here, we provide a comprehensive insight into mutational profiles characterizing each SARS-CoV-2 variant, focusing on spike mutations known to modulate viral infectivity and/or antigenicity. We focused on variants and on specific relevant mutations reported by GISAID, Nextstrain, Outbreak.info, Pango, and Stanford database websites that were associated with any clinical/diagnostic impact, according to published manuscripts. Furthermore, 1,223,338 full-length high-quality SARS-CoV-2 genome sequences were retrieved from GISAID and used to accurately define the specific mutational patterns in each variant. Finally, mutations were mapped on the three-dimensional structure of the SARS-CoV-2 spike protein to assess their localization in the different spike domains. Overall, this review sheds light and assists in defining the genetic signatures characterizing the currently circulating variants and their clinical relevance. IMPORTANCE Since the emergence of SARS-CoV-2, several recurrent mutations, particularly in the spike protein, arose during human-to-human transmission or spillover events between humans and animals, generating distinct worrisome variants of concern (VOCs) or of interest (VOIs), designated as such due to their clinical and diagnostic impacts. Characterizing these variants and their related mutations is important in tracking SAR-CoV-2 evolution and understanding the efficacy of vaccines and therapeutics based on monoclonal antibodies, convalescent-phase sera, and direct antivirals. Our study provides a comprehensive survey of the mutational profiles characterizing the important SARS-CoV-2 variants, focusing on spike mutations and highlighting other protein mutations.


Assuntos
COVID-19/virologia , Mutação , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Animais , Genoma Viral , Humanos , Pandemias , Filogenia
20.
Biomedicines ; 9(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34680469

RESUMO

HBeAg is a marker of HBV-activity, and HBeAg-loss predicts a favorable clinical outcome. Here, we characterize HBeAg-levels across different phases of HBV infection, their correlation with virological/biochemical markers and the virological response to anti-HBV therapy. Quantitative HBeAg (qHBeAg, DiaSorin) is assessed in 101 HBeAg+ patients: 20 with acute-infection, 20 with chronic infection, 32 with chronic hepatitis and 29 with immunosuppression-driven HBV-reactivation (HBV-R). A total of 15/29 patients with HBV-R are monitored for >12 months after starting TDF/ETV. qHBeAg is higher in immunosuppression-driven HBV-R (median[IQR]:930[206-1945]PEIU/mL) and declines in chronic hepatitis (481[28-1393]PEIU/mL, p = 0.03), suggesting HBeAg production, modulated by the extent of immunological pressure. This is reinforced by the negative correlation between qHBeAg and ALT in acute infection (Rho = -0.66, p = 0.006) and chronic hepatitis (Rho = -0.35; p = 0.05). Interestingly, qHBeAg strongly and positively correlates with qHBsAg across the study groups, suggesting cccDNA as a major source of both proteins in the setting of HBeAg positivity (with limited contribution of integrated HBV-DNA to HBsAg production). Focusing on 15 patients with HBV-R starting TDF/ETV, virological suppression and HBeAg-loss are achieved in 60% and 53.3%. Notably, the combination of qHBeAg > 2000 PEIU/mL + qHBsAg > 52,000 IU/mL at HBV-R is the only factor predicting no HBeAg loss (HBeAg loss: 0% with vs. 72.7% without qHBeAg > 2000 PEIU/mL + qHBsAg > 52,000 IU/mL, p = 0.03). In conclusion, qHBeAg varies over the natural course of HBV infection, according to the extent of immunological pressure. In the setting of HBV-R, qHBeAg could be useful in predicting the treatment response under immunosuppression.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa