Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(1): e2312202121, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38154065

RESUMO

Current epidemics in the biological and social domains are challenging the standard assumptions of mathematical contagion models. Chief among them are the complex patterns of transmission caused by heterogeneous group sizes and infection risk varying by orders of magnitude in different settings, like indoor versus outdoor gatherings in the COVID-19 pandemic or different moderation practices in social media communities. However, quantifying these heterogeneous levels of risk is difficult, and most models typically ignore them. Here, we include these features in an epidemic model on weighted hypergraphs to capture group-specific transmission rates. We study analytically the consequences of ignoring the heterogeneous transmissibility and find an induced superlinear infection rate during the emergence of a new outbreak, even though the underlying mechanism is a simple, linear contagion. The dynamics produced at the individual and group levels are therefore more similar to complex, nonlinear contagions, thus blurring the line between simple and complex contagions in realistic settings. We support this claim by introducing a Bayesian inference framework to quantify the nonlinearity of contagion processes. We show that simple contagions on real weighted hypergraphs are systematically biased toward the superlinear regime if the heterogeneity of the weights is ignored, greatly increasing the risk of erroneous classification as complex contagions. Our results provide an important cautionary tale for the challenging task of inferring transmission mechanisms from incidence data. Yet, it also paves the way for effective models that capture complex features of epidemics through nonlinear infection rates.


Assuntos
Modelos Teóricos , Pandemias , Humanos , Teorema de Bayes , Viés
2.
PLoS Biol ; 18(11): e3000897, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33180773

RESUMO

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the etiological agent of the Coronavirus Disease 2019 (COVID-19) disease, has moved rapidly around the globe, infecting millions and killing hundreds of thousands. The basic reproduction number, which has been widely used-appropriately and less appropriately-to characterize the transmissibility of the virus, hides the fact that transmission is stochastic, often dominated by a small number of individuals, and heavily influenced by superspreading events (SSEs). The distinct transmission features of SARS-CoV-2, e.g., high stochasticity under low prevalence (as compared to other pathogens, such as influenza), and the central role played by SSEs on transmission dynamics cannot be overlooked. Many explosive SSEs have occurred in indoor settings, stoking the pandemic and shaping its spread, such as long-term care facilities, prisons, meat-packing plants, produce processing facilities, fish factories, cruise ships, family gatherings, parties, and nightclubs. These SSEs demonstrate the urgent need to understand routes of transmission, while posing an opportunity to effectively contain outbreaks with targeted interventions to eliminate SSEs. Here, we describe the different types of SSEs, how they influence transmission, empirical evidence for their role in the COVID-19 pandemic, and give recommendations for control of SARS-CoV-2.


Assuntos
COVID-19/prevenção & controle , COVID-19/transmissão , Surtos de Doenças/prevenção & controle , SARS-CoV-2/fisiologia , Coinfecção/epidemiologia , Humanos , Distribuição de Poisson , Processos Estocásticos
3.
Bull Math Biol ; 85(12): 118, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857996

RESUMO

Forecasting disease spread is a critical tool to help public health officials design and plan public health interventions. However, the expected future state of an epidemic is not necessarily well defined as disease spread is inherently stochastic, contact patterns within a population are heterogeneous, and behaviors change. In this work, we use time-dependent probability generating functions (PGFs) to capture these characteristics by modeling a stochastic branching process of the spread of a disease over a network of contacts in which public health interventions are introduced over time. To achieve this, we define a general transmissibility equation to account for varying transmission rates (e.g. masking), recovery rates (e.g. treatment), contact patterns (e.g. social distancing) and percentage of the population immunized (e.g. vaccination). The resulting framework allows for a temporal and probabilistic analysis of an intervention's impact on disease spread, which match continuous-time stochastic simulations that are much more computationally expensive. To aid policy making, we then define several metrics over which temporal and probabilistic intervention forecasts can be compared: Looking at the expected number of cases and the worst-case scenario over time, as well as the probability of reaching a critical level of cases and of not seeing any improvement following an intervention. Given that epidemics do not always follow their average expected trajectories and that the underlying dynamics can change over time, our work paves the way for more detailed short-term forecasts of disease spread and more informed comparison of intervention strategies.


Assuntos
Epidemias , Modelos Biológicos , Conceitos Matemáticos , Epidemias/prevenção & controle , Saúde Pública , Previsões
4.
Proc Natl Acad Sci U S A ; 117(33): 20244-20253, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32759211

RESUMO

Structural connectivity in the brain is typically studied by reducing its observation to a single spatial resolution. However, the brain possesses a rich architecture organized over multiple scales linked to one another. We explored the multiscale organization of human connectomes using datasets of healthy subjects reconstructed at five different resolutions. We found that the structure of the human brain remains self-similar when the resolution of observation is progressively decreased by hierarchical coarse-graining of the anatomical regions. Strikingly, a geometric network model, where distances are not Euclidean, predicts the multiscale properties of connectomes, including self-similarity. The model relies on the application of a geometric renormalization protocol which decreases the resolution by coarse-graining and averaging over short similarity distances. Our results suggest that simple organizing principles underlie the multiscale architecture of human structural brain networks, where the same connectivity law dictates short- and long-range connections between different brain regions over many resolutions. The implications are varied and can be substantial for fundamental debates, such as whether the brain is working near a critical point, as well as for applications including advanced tools to simplify the digital reconstruction and simulation of the brain.


Assuntos
Encéfalo/fisiologia , Conectoma , Modelos Neurológicos , Vias Neurais , Humanos , Modelos Estatísticos , Rede Nervosa
5.
Biol Cell ; 113(8): 329-343, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33826772

RESUMO

Inside living cells, the remodelling of membrane tubules by actomyosin networks is crucial for processes such as intracellular trafficking or organelle reshaping. In this review, we first present various in vivo situations in which actin affects membrane tubule remodelling, then we recall some results on force production by actin dynamics and on membrane tubules physics. Finally, we show that our knowledge of the underlying mechanisms by which actomyosin dynamics affect tubule morphology has recently been moved forward. This is thanks to in vitro experiments that mimic cellular membranes and actin dynamics and allow deciphering the physics of tubule remodelling in biochemically controlled conditions, and shed new light on tubule shape regulation.


Assuntos
Citoesqueleto de Actina , Membrana Celular , Células Eucarióticas , Citoesqueleto de Actina/fisiologia , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Cavéolas/fisiologia , Membrana Celular/fisiologia , Membrana Celular/ultraestrutura , Vesículas Revestidas por Clatrina/fisiologia , Endocitose/fisiologia , Células Eucarióticas/fisiologia , Células Eucarióticas/ultraestrutura , Transporte Proteico
6.
Phys Rev Lett ; 127(15): 158301, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34678024

RESUMO

The collocation of individuals in different environments is an important prerequisite for exposure to infectious diseases on a social network. Standard epidemic models fail to capture the potential complexity of this scenario by (1) neglecting the higher-order structure of contacts that typically occur through environments like workplaces, restaurants, and households, and (2) assuming a linear relationship between the exposure to infected contacts and the risk of infection. Here, we leverage a hypergraph model to embrace the heterogeneity of environments and the heterogeneity of individual participation in these environments. We find that combining heterogeneous exposure with the concept of minimal infective dose induces a universal nonlinear relationship between infected contacts and infection risk. Under nonlinear infection kernels, conventional epidemic wisdom breaks down with the emergence of discontinuous transitions, superexponential spread, and hysteresis.

7.
Phys Rev Lett ; 126(9): 098301, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33750152

RESUMO

Recommendations around epidemics tend to focus on individual behaviors, with much less efforts attempting to guide event cancellations and other collective behaviors since most models lack the higher-order structure necessary to describe large gatherings. Through a higher-order description of contagions on networks, we model the impact of a blanket cancellation of events larger than a critical size and find that epidemics can suddenly collapse when interventions operate over groups of individuals rather than at the level of individuals. We relate this phenomenon to the onset of mesoscopic localization, where contagions concentrate around dominant groups.


Assuntos
Epidemias/prevenção & controle , Modelos Teóricos , Transmissão de Doença Infecciosa/prevenção & controle , Humanos , Comportamento Social
8.
PLoS Comput Biol ; 16(2): e1007584, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32012151

RESUMO

Connectomes are spatially embedded networks whose architecture has been shaped by physical constraints and communication needs throughout evolution. Using a decentralized navigation protocol, we investigate the relationship between the structure of the connectomes of different species and their spatial layout. As a navigation strategy, we use greedy routing where nearest neighbors, in terms of geometric distance, are visited. We measure the fraction of successful greedy paths and their length as compared to shortest paths in the topology of connectomes. In Euclidean space, we find a striking difference between the navigability properties of mammalian and non-mammalian species, which implies the inability of Euclidean distances to fully explain the structural organization of their connectomes. In contrast, we find that hyperbolic space, the effective geometry of complex networks, provides almost perfectly navigable maps of connectomes for all species, meaning that hyperbolic distances are exceptionally congruent with the structure of connectomes. Hyperbolic maps therefore offer a quantitative meaningful representation of connectomes that suggests a new cartography of the brain based on the combination of its connectivity with its effective geometry rather than on its anatomy only. Hyperbolic maps also provide a universal framework to study decentralized communication processes in connectomes of different species and at different scales on an equal footing.


Assuntos
Mapeamento Encefálico/métodos , Conectoma , Algoritmos , Animais , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Humanos , Modelos Neurológicos , Especificidade da Espécie
9.
Proc Natl Acad Sci U S A ; 114(34): 8969-8973, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28790185

RESUMO

Zika virus (ZIKV) exhibits unique transmission dynamics in that it is concurrently spread by a mosquito vector and through sexual contact. Due to the highly asymmetric durations of infectiousness between males and females-it is estimated that males are infectious for periods up to 10 times longer than females-we show that this sexual component of ZIKV transmission behaves akin to an asymmetric percolation process on the network of sexual contacts. We exactly solve the properties of this asymmetric percolation on random sexual contact networks and show that this process exhibits two epidemic transitions corresponding to a core-periphery structure. This structure is not present in the underlying contact networks, which are not distinguishable from random networks, and emerges because of the asymmetric percolation. We provide an exact analytical description of this double transition and discuss the implications of our results in the context of ZIKV epidemics. Most importantly, our study suggests a bias in our current ZIKV surveillance, because the community most at risk is also one of the least likely to get tested.


Assuntos
Algoritmos , Modelos Teóricos , Infecções Sexualmente Transmissíveis/transmissão , Infecção por Zika virus/transmissão , Animais , Simulação por Computador , Culicidae/virologia , Epidemias , Feminino , Humanos , Cinética , Masculino , Mosquitos Vetores/virologia , Infecções Sexualmente Transmissíveis/epidemiologia , Infecções Sexualmente Transmissíveis/virologia , Zika virus/fisiologia , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/virologia
10.
PLoS Pathog ; 13(9): e1006633, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28934370

RESUMO

Pathogens often follow more than one transmission route during outbreaks-from needle sharing plus sexual transmission of HIV to small droplet aerosol plus fomite transmission of influenza. Thus, controlling an infectious disease outbreak often requires characterizing the risk associated with multiple mechanisms of transmission. For example, during the Ebola virus outbreak in West Africa, weighing the relative importance of funeral versus health care worker transmission was essential to stopping disease spread. As a result, strategic policy decisions regarding interventions must rely on accurately characterizing risks associated with multiple transmission routes. The ongoing Zika virus (ZIKV) outbreak challenges our conventional methodologies for translating case-counts into route-specific transmission risk. Critically, most approaches will fail to accurately estimate the risk of sustained sexual transmission of a pathogen that is primarily vectored by a mosquito-such as the risk of sustained sexual transmission of ZIKV. By computationally investigating a novel mathematical approach for multi-route pathogens, our results suggest that previous epidemic threshold estimates could under-estimate the risk of sustained sexual transmission by at least an order of magnitude. This result, coupled with emerging clinical, epidemiological, and experimental evidence for an increased risk of sexual transmission, would strongly support recent calls to classify ZIKV as a sexually transmitted infection.


Assuntos
Modelos Teóricos , Infecção por Zika virus/transmissão , Surtos de Doenças , Humanos , Zika virus
11.
Mol Syst Biol ; 10: 740, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25028489

RESUMO

Microbes can tailor transcriptional responses to diverse environmental challenges despite having streamlined genomes and a limited number of regulators. Here, we present data-driven models that capture the dynamic interplay of the environment and genome-encoded regulatory programs of two types of prokaryotes: Escherichia coli (a bacterium) and Halobacterium salinarum (an archaeon). The models reveal how the genome-wide distributions of cis-acting gene regulatory elements and the conditional influences of transcription factors at each of those elements encode programs for eliciting a wide array of environment-specific responses. We demonstrate how these programs partition transcriptional regulation of genes within regulons and operons to re-organize gene-gene functional associations in each environment. The models capture fitness-relevant co-regulation by different transcriptional control mechanisms acting across the entire genome, to define a generalized, system-level organizing principle for prokaryotic gene regulatory networks that goes well beyond existing paradigms of gene regulation. An online resource (http://egrin2.systemsbiology.net) has been developed to facilitate multiscale exploration of conditional gene regulation in the two prokaryotes.


Assuntos
Redes Reguladoras de Genes , Genoma Microbiano , Modelos Genéticos , Algoritmos , Escherichia coli/genética , Regulação da Expressão Gênica , Aptidão Genética , Halobacterium salinarum/genética , Óperon , Elementos Reguladores de Transcrição , Regulon
12.
J Math Biol ; 69(6-7): 1627-60, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24366372

RESUMO

Dynamics on networks is considered from the perspective of Markov stochastic processes. We partially describe the state of the system through network motifs and infer any missing data using the available information. This versatile approach is especially well adapted for modelling spreading processes and/or population dynamics. In particular, the generality of our framework and the fact that its assumptions are explicitly stated suggests that it could be used as a common ground for comparing existing epidemics models too complex for direct comparison, such as agent-based computer simulations. We provide many examples for the special cases of susceptible-infectious-susceptible and susceptible-infectious-removed dynamics (e.g., epidemics propagation) and we observe multiple situations where accurate results may be obtained at low computational cost. Our perspective reveals a subtle balance between the complex requirements of a realistic model and its basic assumptions.


Assuntos
Doenças Transmissíveis/epidemiologia , Epidemias , Cadeias de Markov , Dinâmica Populacional , Simulação por Computador , Humanos , Modelos Teóricos
13.
Netw Neurosci ; 8(1): 44-80, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562286

RESUMO

Elucidating the coupling between the structure and the function of the brain and its development across maturation has attracted a lot of interest in the field of network neuroscience in the last 15 years. Mounting evidence supports the hypothesis that the onset of certain brain disorders is linked with the interplay between the structural architecture of the brain and its functional processes, often accompanied with unusual connectivity features. This paper introduces a method called the network-based statistic-simultaneous node investigation (NBS-SNI) that integrates both representations into a single framework, and identifies connectivity abnormalities in case-control studies. With this method, significance is given to the properties of the nodes, as well as to their connections. This approach builds on the well-established network-based statistic (NBS) proposed in 2010. We uncover and identify the regimes in which NBS-SNI offers a gain in statistical resolution to identify a contrast of interest using synthetic data. We also apply our method on two real case-control studies, one consisting of individuals diagnosed with autism and the other consisting of individuals diagnosed with early psychosis. Using NBS-SNI and node properties such as the closeness centrality and local information dimension, we found hypo- and hyperconnected subnetworks and show that our method can offer a 9 percentage points gain in prediction power over the standard NBS.

14.
Nat Commun ; 15(1): 4478, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796449

RESUMO

Predicting the evolution of a large system of units using its structure of interaction is a fundamental problem in complex system theory. And so is the problem of reconstructing the structure of interaction from temporal observations. Here, we find an intricate relationship between predictability and reconstructability using an information-theoretical point of view. We use the mutual information between a random graph and a stochastic process evolving on this random graph to quantify their codependence. Then, we show how the uncertainty coefficients, which are intimately related to that mutual information, quantify our ability to reconstruct a graph from an observed time series, and our ability to predict the evolution of a process from the structure of its interactions. We provide analytical calculations of the uncertainty coefficients for many different systems, including continuous deterministic systems, and describe a numerical procedure when exact calculations are intractable. Interestingly, we find that predictability and reconstructability, even though closely connected by the mutual information, can behave differently, even in a dual manner. We prove how such duality universally emerges when changing the number of steps in the process. Finally, we provide evidence that predictability-reconstruction dualities may exist in dynamical processes on real networks close to criticality.

15.
ArXiv ; 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36798454

RESUMO

Forecasting disease spread is a critical tool to help public health officials design and plan public health interventions.However, the expected future state of an epidemic is not necessarily well defined as disease spread is inherently stochastic, contact patterns within a population are heterogeneous, and behaviors change. In this work, we use time-dependent probability generating functions (PGFs) to capture these characteristics by modeling a stochastic branching process of the spread of a disease over a network of contacts in which public health interventions are introduced over time. To achieve this, we define a general transmissibility equation to account for varying transmission rates (e.g. masking), recovery rates (e.g. treatment), contact patterns (e.g. social distancing) and percentage of the population immunized (e.g. vaccination). The resulting framework allows for a temporal and probabilistic analysis of an intervention's impact on disease spread, which match continuous-time stochastic simulations that are much more computationally expensive.To aid policy making, we then define several metrics over which temporal and probabilistic intervention forecasts can be compared: Looking at the expected number of cases and the worst-case scenario over time, as well as the probability of reaching a critical level of cases and of not seeing any improvement following an intervention.Given that epidemics do not always follow their average expected trajectories and that the underlying dynamics can change over time, our work paves the way for more detailed short-term forecasts of disease spread and more informed comparison of intervention strategies.

16.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38366192

RESUMO

CRISPR-Cas systems are defense mechanisms against phages and other nucleic acids that invade bacteria and archaea. In Escherichia coli, it is generally accepted that CRISPR-Cas systems are inactive in laboratory conditions due to a transcriptional repressor. In natural isolates, it has been shown that CRISPR arrays remain stable over the years and that most spacer targets (protospacers) remain unknown. Here, we re-examine CRISPR arrays in natural E. coli isolates and investigate viral and bacterial genomes for spacer targets using a bioinformatics approach coupled to a unique biological dataset. We first sequenced the CRISPR1 array of 1769 E. coli isolates from the fecal samples of 639 children obtained during their first year of life. We built a network with edges between isolates that reflect the number of shared spacers. The isolates grouped into 34 modules. A search for matching spacers in bacterial genomes showed that E. coli spacers almost exclusively target prophages. While we found instances of self-targeting spacers, those involving a prophage and a spacer within the same bacterial genome were rare. The extensive search for matching spacers also expanded the library of known E. coli protospacers to 60%. Altogether, these results favor the concept that E. coli's CRISPR-Cas is an antiprophage system and highlight the importance of reconsidering the criteria use to deem CRISPR-Cas systems active.


Assuntos
Bacteriófagos , Prófagos , Criança , Humanos , Prófagos/genética , Escherichia coli/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Bacteriófagos/genética , Genoma Bacteriano , Sistemas CRISPR-Cas
17.
PNAS Nexus ; 2(5): pgad136, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37181048

RESUMO

Over the last decade, random hyperbolic graphs have proved successful in providing geometric explanations for many key properties of real-world networks, including strong clustering, high navigability, and heterogeneous degree distributions. These properties are ubiquitous in systems as varied as the internet, transportation, brain or epidemic networks, which are thus unified under the hyperbolic network interpretation on a surface of constant negative curvature. Although a few studies have shown that hyperbolic models can generate community structures, another salient feature observed in real networks, we argue that the current models are overlooking the choice of the latent space dimensionality that is required to adequately represent clustered networked data. We show that there is an important qualitative difference between the lowest-dimensional model and its higher-dimensional counterparts with respect to how similarity between nodes restricts connection probabilities. Since more dimensions also increase the number of nearest neighbors for angular clusters representing communities, considering only one more dimension allows us to generate more realistic and diverse community structures.

18.
Sci Rep ; 13(1): 21364, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049512

RESUMO

The network reconstruction task aims to estimate a complex system's structure from various data sources such as time series, snapshots, or interaction counts. Recent work has examined this problem in networks whose relationships involve precisely two entities-the pairwise case. Here, using Bayesian inference, we investigate the general problem of reconstructing a network in which higher-order interactions are also present. We study a minimal example of this problem, focusing on the case of hypergraphs with interactions between pairs and triplets of vertices, measured imperfectly and indirectly. We derive a Metropolis-Hastings-within-Gibbs algorithm for this model to highlight the unique challenges that come with estimating higher-order models. We show that this approach tends to reconstruct empirical and synthetic networks more accurately than an equivalent graph model without higher-order interactions.

19.
PNAS Nexus ; 2(5): pgad150, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37215634

RESUMO

Dimension reduction is a common strategy to study nonlinear dynamical systems composed by a large number of variables. The goal is to find a smaller version of the system whose time evolution is easier to predict while preserving some of the key dynamical features of the original system. Finding such a reduced representation for complex systems is, however, a difficult task. We address this problem for dynamics on weighted directed networks, with special emphasis on modular and heterogeneous networks. We propose a two-step dimension-reduction method that takes into account the properties of the adjacency matrix. First, units are partitioned into groups of similar connectivity profiles. Each group is associated to an observable that is a weighted average of the nodes' activities within the group. Second, we derive a set of equations that must be fulfilled for these observables to properly represent the original system's behavior, together with a method for approximately solving them. The result is a reduced adjacency matrix and an approximate system of ODEs for the observables' evolution. We show that the reduced system can be used to predict some characteristic features of the complete dynamics for different types of connectivity structures, both synthetic and derived from real data, including neuronal, ecological, and social networks. Our formalism opens a way to a systematic comparison of the effect of various structural properties on the overall network dynamics. It can thus help to identify the main structural driving forces guiding the evolution of dynamical processes on networks.

20.
Nat Commun ; 14(1): 7585, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37990019

RESUMO

One of the pillars of the geometric approach to networks has been the development of model-based mapping tools that embed real networks in its latent geometry. In particular, the tool Mercator embeds networks into the hyperbolic plane. However, some real networks are better described by the multidimensional formulation of the underlying geometric model. Here, we introduce D-Mercator, a model-based embedding method that produces multidimensional maps of real networks into the (D + 1)-hyperbolic space, where the similarity subspace is represented as a D-sphere. We used D-Mercator to produce multidimensional hyperbolic maps of real networks and estimated their intrinsic dimensionality in terms of navigability and community structure. Multidimensional representations of real networks are instrumental in the identification of factors that determine connectivity and in elucidating fundamental issues that hinge on dimensionality, such as the presence of universality in critical behavior.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa