Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Water Sci Technol ; 77(9-10): 2415-2425, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29893730

RESUMO

In activated sludge (AS) process, the impact of the operational parameters on process efficiency is assumed to be correlated with the sludge properties. This study provides a better insight into these interactions by subjecting a laboratory-scale AS system to a sequence of operating condition modifications enabling typical situations of a wastewater treatment plant to be represented. Process performance was assessed and AS floc morphology (size, circularity, convexity, solidity and aspect ratio) was quantified by measuring 100,000 flocs per sample with an automated image analysis technique. Introducing 3D distributions, which combine morphological properties, allowed the identification of a filamentous bulking characterized by a floc population shift towards larger sizes and lower solidity and circularity values. Moreover, a washout phenomenon was characterized by smaller AS flocs and an increase in their solidity. Recycle ratio increase and COD:N ratio decrease both promoted a slight reduction of floc sizes and a constant evolution of circularity and convexity values. The analysis of the volume-based 3D distributions turned out to be a smart tool to combine size and shape data, allowing a deeper understanding of the dynamics of floc structure under process disturbances.


Assuntos
Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Floculação , Águas Residuárias/química , Poluentes Químicos da Água , Purificação da Água/métodos
2.
Water Res ; 242: 120275, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37413746

RESUMO

A mathematical correlation between biomass kinetic and membrane fouling can improve the understanding and spread of Membrane Bioreactor (MBR) technology, especially in solving the membrane fouling issues. On this behalf, this paper, produced by the International Water Association (IWA) Task Group on Membrane modelling and control, reviews the current state-of-the-art regarding the modelling of kinetic processes of biomass, focusing on modelling production and utilization of soluble microbial products (SMP) and extracellular polymeric substances (EPS). The key findings of this work show that the new conceptual approaches focus on the role of different bacterial groups in the formation and degradation of SMP/EPS. Even though several studies have been published regarding SMP modelling, there still needs to be more information due to the highly complicated SMP nature to facilitate the accurate modelling of membrane fouling. The EPS group has seldom been addressed in the literature, probably due to the knowledge deficiency concerning the triggers for production and degradation pathways in MBR systems, which require further efforts. Finally, the successful model applications showed that proper estimation of SMP and EPS by modelling approaches could optimise membrane fouling, which can influence the MBR energy consumption, operating costs, and greenhouse gas emissions.


Assuntos
Matriz Extracelular de Substâncias Poliméricas , Membranas Artificiais , Reatores Biológicos/microbiologia , Bactérias , Biomassa , Esgotos/microbiologia
3.
Sci Total Environ ; 809: 151109, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34688739

RESUMO

Phosphorus (P) removal from the domestic wastewater is required to counter the eutrophication in receiving water bodies and is mandated by the regulatory frameworks in several countries with discharge limits within 1-2mgPL-1. Operating at higher sludge retention time (SRT) and higher biomass concentration than the conventional activated sludge process (CASP), membrane bioreactors (MBRs) are able to remove 70-98% phosphorus without addition of coagulant. In full-scale facilities, enhanced biological phosphorus removal (EBPR) is assisted by the addition of metal coagulant to ensure >95% P-removal. MBRs are successfully used for super-large-scale wastewater treatment facilities (capacity >100,000 m3d-1). This paper documents the knowledge of P-removal modeling from lab to full-scale submerged MBRs and assesses the existing mathematical models for P-removal from domestic wastewater. There are still limited studies involving integrated modeling of the MBRs (full/super large-scale), considering the complex interactions among biology, chemical addition, filtration, and fouling. This paper analyses the design configurations and the parameters affecting the biological and chemical P-removal in MBRs to understand the P-removal process sensitivity and their implications for the modeling studies. Furthermore, it thoroughly reviews the applications of bio-kinetic and chemical precipitation models to MBRs for assessing their effectiveness with default stoichiometric and kinetic parameters and the extent to which these parameters have been calibrated/adjusted to simulate the P-removal successfully. It also presents a brief overview and comparison of seven (7) chemical precipitation models, along with a quick comparison of commercially available simulators. In addition to advantages associated with chemical precipitation for P-removal, its role in changing the relative abundance of the microbial community responsible for P-removal and denitrification and the controversial role in fouling mitigation/increase are discussed. Lastly, it encompasses several coagulant dosing control systems and their applications in the pilot to full-scale facilities to save coagulants and optimize the P-removal performance.


Assuntos
Membranas Artificiais , Eliminação de Resíduos Líquidos , Reatores Biológicos , Esgotos , Águas Residuárias
4.
Bioresour Technol ; 329: 124828, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33621928

RESUMO

Integrated Membrane Bioreactor (MBR) models, combination of biological and physical models, have been representing powerful tools for the accomplishment of high environmental sustainability. This paper, produced by the International Water Association (IWA) Task Group on Membrane Modelling and Control, reviews the state-of-the-art, identifying gaps for future researches, and proposes a new integrated MBR modelling framework. In particular, the framework aims to guide researchers and managers in pursuing good performances of MBRs in terms of effluent quality, operating costs (such as membrane fouling, energy consumption due to aeration) and mitigation of greenhouse gas emissions.


Assuntos
Gases de Efeito Estufa , Eliminação de Resíduos Líquidos , Reatores Biológicos , Membranas Artificiais , Modelos Teóricos , Águas Residuárias
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa