Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Plant J ; 89(5): 1042-1054, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27775877

RESUMO

Cowpea (Vigna unguiculata L. Walp.) is a legume crop that is resilient to hot and drought-prone climates, and a primary source of protein in sub-Saharan Africa and other parts of the developing world. However, genome resources for cowpea have lagged behind most other major crops. Here we describe foundational genome resources and their application to the analysis of germplasm currently in use in West African breeding programs. Resources developed from the African cultivar IT97K-499-35 include a whole-genome shotgun (WGS) assembly, a bacterial artificial chromosome (BAC) physical map, and assembled sequences from 4355 BACs. These resources and WGS sequences of an additional 36 diverse cowpea accessions supported the development of a genotyping assay for 51 128 SNPs, which was then applied to five bi-parental RIL populations to produce a consensus genetic map containing 37 372 SNPs. This genetic map enabled the anchoring of 100 Mb of WGS and 420 Mb of BAC sequences, an exploration of genetic diversity along each linkage group, and clarification of macrosynteny between cowpea and common bean. The SNP assay enabled a diversity analysis of materials from West African breeding programs. Two major subpopulations exist within those materials, one of which has significant parentage from South and East Africa and more diversity. There are genomic regions of high differentiation between subpopulations, one of which coincides with a cluster of nodulin genes. The new resources and knowledge help to define goals and accelerate the breeding of improved varieties to address food security issues related to limited-input small-holder farming and climate stress.


Assuntos
Produtos Agrícolas/genética , Produtos Agrícolas/fisiologia , Vigna/genética , Vigna/fisiologia , Cromossomos Artificiais Bacterianos , Cromossomos de Plantas/genética , Clima , Abastecimento de Alimentos , Genoma de Planta/genética , Genótipo
2.
Plant J ; 84(1): 216-27, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26252423

RESUMO

Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene-containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical-mapped gene-bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene-enriched BACs and are characterized by high recombination rates, there are also gene-dense regions with suppressed recombination. We made use of published map-anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D-genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley-Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map-based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene-dense but low recombination is particularly relevant.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Genoma de Planta/genética , Hordeum/genética , Dados de Sequência Molecular
3.
Bioinformatics ; 31(18): 2972-80, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25995232

RESUMO

MOTIVATION: As the invention of DNA sequencing in the 70s, computational biologists have had to deal with the problem of de novo genome assembly with limited (or insufficient) depth of sequencing. In this work, we investigate the opposite problem, that is, the challenge of dealing with excessive depth of sequencing. RESULTS: We explore the effect of ultra-deep sequencing data in two domains: (i) the problem of decoding reads to bacterial artificial chromosome (BAC) clones (in the context of the combinatorial pooling design we have recently proposed), and (ii) the problem of de novo assembly of BAC clones. Using real ultra-deep sequencing data, we show that when the depth of sequencing increases over a certain threshold, sequencing errors make these two problems harder and harder (instead of easier, as one would expect with error-free data), and as a consequence the quality of the solution degrades with more and more data. For the first problem, we propose an effective solution based on 'divide and conquer': we 'slice' a large dataset into smaller samples of optimal size, decode each slice independently, and then merge the results. Experimental results on over 15 000 barley BACs and over 4000 cowpea BACs demonstrate a significant improvement in the quality of the decoding and the final assembly. For the second problem, we show for the first time that modern de novo assemblers cannot take advantage of ultra-deep sequencing data. AVAILABILITY AND IMPLEMENTATION: Python scripts to process slices and resolve decoding conflicts are available from http://goo.gl/YXgdHT; software Hashfilter can be downloaded from http://goo.gl/MIyZHs CONTACT: stelo@cs.ucr.edu or timothy.close@ucr.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Biologia Computacional/métodos , Fabaceae/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hordeum/genética , Análise de Sequência de DNA/métodos , Software , Cromossomos Artificiais Bacterianos , Alinhamento de Sequência
4.
PLoS Comput Biol ; 9(4): e1003010, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23592960

RESUMO

For the vast majority of species - including many economically or ecologically important organisms, progress in biological research is hampered due to the lack of a reference genome sequence. Despite recent advances in sequencing technologies, several factors still limit the availability of such a critical resource. At the same time, many research groups and international consortia have already produced BAC libraries and physical maps and now are in a position to proceed with the development of whole-genome sequences organized around a physical map anchored to a genetic map. We propose a BAC-by-BAC sequencing protocol that combines combinatorial pooling design and second-generation sequencing technology to efficiently approach denovo selective genome sequencing. We show that combinatorial pooling is a cost-effective and practical alternative to exhaustive DNA barcoding when preparing sequencing libraries for hundreds or thousands of DNA samples, such as in this case gene-bearing minimum-tiling-path BAC clones. The novelty of the protocol hinges on the computational ability to efficiently compare hundred millions of short reads and assign them to the correct BAC clones (deconvolution) so that the assembly can be carried out clone-by-clone. Experimental results on simulated data for the rice genome show that the deconvolution is very accurate, and the resulting BAC assemblies have high quality. Results on real data for a gene-rich subset of the barley genome confirm that the deconvolution is accurate and the BAC assemblies have good quality. While our method cannot provide the level of completeness that one would achieve with a comprehensive whole-genome sequencing project, we show that it is quite successful in reconstructing the gene sequences within BACs. In the case of plants such as barley, this level of sequence knowledge is sufficient to support critical end-point objectives such as map-based cloning and marker-assisted breeding.


Assuntos
Mapeamento de Sequências Contíguas/métodos , Hordeum/genética , Análise de Sequência de DNA , Cromossomos Artificiais Bacterianos , Clonagem Molecular , Biologia Computacional/métodos , Simulação por Computador , Genes de Plantas , Marcadores Genéticos/genética , Biblioteca Genômica , Genômica , Modelos Genéticos , Oryza/genética , Mapeamento Físico do Cromossomo , Especificidade da Espécie
5.
Nat Commun ; 9(1): 1336, 2018 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-29626205

RESUMO

Thin films based on two-dimensional metal halide perovskites have achieved exceptional performance and stability in numerous optoelectronic device applications. Simple solution processing of the 2D perovskite provides opportunities for manufacturing devices at drastically lower cost compared to current commercial technologies. A key to high device performance is to align the 2D perovskite layers, during the solution processing, vertical to the electrodes to achieve efficient charge transport. However, it is yet to be understood how the counter-intuitive vertical orientations of 2D perovskite layers on substrates can be obtained. Here we report a formation mechanism of such vertically orientated 2D perovskite in which the nucleation and growth arise from the liquid-air interface. As a consequence, choice of substrates can be liberal from polymers to metal oxides depending on targeted application. We also demonstrate control over the degree of preferential orientation of the 2D perovskite layers and its drastic impact on device performance.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa