Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 137
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(37): e2303080120, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37669371

RESUMO

Multiple viruses, including pathogenic viruses, bacteriophages, and even plant viruses, cause a phenomenon termed superinfection exclusion whereby a currently infected cell is resistant to secondary infection by the same or a closely related virus. In alphaviruses, this process is thought to be mediated, at least in part, by the viral protease (nsP2) which is responsible for processing the nonstructural polyproteins (P123 and P1234) into individual proteins (nsP1-nsP4), forming the viral replication complex. Taking a synthetic biology approach, we mimicked this naturally occurring phenomenon by generating a superinfection exclusion-like state in Aedes aegypti mosquitoes, rendering them refractory to alphavirus infection. By artificially expressing Sindbis virus (SINV) and chikungunya virus (CHIKV) nsP2 in mosquito cells and transgenic mosquitoes, we demonstrated a reduction in both SINV and CHIKV viral replication rates in cells following viral infection as well as reduced infection prevalence, viral titers, and transmission potential in mosquitoes.


Assuntos
Aedes , Infecções por Alphavirus , Vírus Chikungunya , Superinfecção , Febre Amarela , Animais , Sindbis virus
2.
PLoS Genet ; 18(9): e1010370, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36121880

RESUMO

The introgression of genetic traits through gene drive may serve as a powerful and widely applicable method of biological control. However, for many applications, a self-perpetuating gene drive that can spread beyond the specific target population may be undesirable and preclude use. Daisy-chain gene drives have been proposed as a means of tuning the invasiveness of a gene drive, allowing it to spread efficiently into the target population, but be self-limiting beyond that. Daisy-chain gene drives are made up of multiple independent drive elements, where each element, except one, biases the inheritance of another, forming a chain. Under ideal inheritance biasing conditions, the released drive elements remain linked in the same configuration, generating copies of most of their elements except for the last remaining link in the chain. Through mathematical modelling of populations connected by migration, we have evaluated the effect of resistance alleles, different fitness costs, reduction in the cut-rate, and maternal deposition on two alternative daisy-chain gene drive designs. We find that the self-limiting nature of daisy-chain gene drives makes their spread highly dependent on the efficiency and fidelity of the inheritance biasing mechanism. In particular, reductions in the cut-rate and the formation of non-lethal resistance alleles can cause drive elements to lose their linked configuration. This severely reduces the invasiveness of the drives and allows for phantom cutting, where an upstream drive element cuts a downstream target locus despite the corresponding drive element being absent, creating and biasing the inheritance of additional resistance alleles. This phantom cutting can be mitigated by an alternative indirect daisy-chain design. We further find that while dominant fitness costs and maternal deposition reduce daisy-chain invasiveness, if overcome with an increased release frequency, they can reduce the spread of the drive into a neighbouring population.


Assuntos
Tecnologia de Impulso Genético , Alelos , Sistemas CRISPR-Cas , Tecnologia de Impulso Genético/métodos , Mutação
3.
PLoS Genet ; 18(2): e1010060, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35180218

RESUMO

The increasing prevalence of insecticide resistance and the ongoing global burden of vector-borne diseases have encouraged new efforts in mosquito control. For Aedes aegypti, the most important arboviral vector, integration rates achieved in Cas9-based knock-ins so far have been rather low, highlighting the need to understand gene conversion patterns and other factors that influence homology-directed repair (HDR) events in this species. In this study, we report the effects of sequence mismatches or donor template forms on integration rates. We found that modest sequence differences between construct homology arms [DNA sequence in the donor template which resembles the region flanking the target cut] and genomic target comprising 1.2% nucleotide dissimilarity (heterology) significantly reduced integration rates. While most integrations (59-88%) from plasmid templates were the result of canonical [on target, perfect repair] HDR events, no canonical events were identified from other donor types (i.e. ssDNA, biotinylated ds/ssDNA). Sequencing of the transgene flanking region in 69 individuals with canonical integrations revealed 60% of conversion tracts to be unidirectional and extend up to 220 bp proximal to the break, though in three individuals bidirectional conversion of up to 725 bp was observed.


Assuntos
Sistemas CRISPR-Cas , Culicidae , Animais , Culicidae/genética , Reparo do DNA/genética , Genoma , Humanos , Mosquitos Vetores/genética
4.
Proc Natl Acad Sci U S A ; 119(46): e2206025119, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343250

RESUMO

The Lepidoptera are an insect order of cultural, economic, and environmental importance, representing ∼10% of all described living species. Yet, for all but one of these species (silkmoth, Bombyx mori), the molecular genetics of how sexual fate is determined remains unknown. We investigated this in the diamondback moth (Plutella xylostella), a globally important, highly invasive, and economically damaging pest of cruciferous crops. Our previous work uncovered a regulator of male sex determination in P. xylostella-PxyMasc, a homolog of B. mori Masculinizer-which, although initially expressed in embryos of both sexes, is then reduced in female embryos, leading to female-specific splicing of doublesex. Here, through sequencing small RNA libraries generated from early embryos and sexed larval pools, we identified a variety of small silencing RNAs (predominantly Piwi-interacting RNAs [piRNAs]) complementary to PxyMasc, whose temporal expression correlated with the reduction in PxyMasc transcript observed previously in females. Analysis of these small RNAs showed that they are expressed from tandemly arranged, multicopy arrays found exclusively on the W (female-specific) chromosome, which we term "Pxyfem". Analysis of the Pxyfem sequences showed that they are partial complementary DNAs (cDNAs) of PxyMasc messenger RNA (mRNA) transcripts, likely integrated into transposable element graveyards by the noncanonical action of retrotransposons (retrocopies), and that their apparent similarity to B. mori feminizer more probably represents convergent evolution. Our study helps elucidate the sex determination cascade in this globally important pest and highlights the "shortcuts" that retrotransposition events can facilitate in the evolution of complex molecular cascades, including sex determination.


Assuntos
Bombyx , Mariposas , Feminino , Masculino , Animais , Bombyx/genética , Bombyx/metabolismo , Mariposas/genética , Mariposas/metabolismo , Splicing de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
5.
J Virol ; 96(15): e0075122, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35867566

RESUMO

Lumpy skin disease virus (LSDV) is a poxvirus that causes severe systemic disease in cattle and is spread by mechanical arthropod-borne transmission. This study quantified the acquisition and retention of LSDV by four species of Diptera (Stomoxys calcitrans, Aedes aegypti, Culex quinquefasciatus, and Culicoides nubeculosus) from cutaneous lesions, normal skin, and blood from a clinically affected animal. The acquisition and retention of LSDV by Ae. aegypti from an artificial membrane feeding system was also examined. Mathematical models of the data were generated to identify the parameters which influence insect acquisition and retention of LSDV. For all four insect species, the probability of acquiring LSDV was substantially greater when feeding on a lesion compared with feeding on normal skin or blood from a clinically affected animal. After feeding on a skin lesion LSDV was retained on the proboscis for a similar length of time (around 9 days) for all four species and for a shorter time in the rest of the body, ranging from 2.2 to 6.4 days. Acquisition and retention of LSDV by Ae. aegypti after feeding on an artificial membrane feeding system that contained a high titer of LSDV was comparable to feeding on a skin lesion on a clinically affected animal, supporting the use of this laboratory model as a replacement for some animal studies. This work reveals that the cutaneous lesions of LSD provide the high-titer source required for acquisition of the virus by insects, thereby enabling the mechanical vector-borne transmission. IMPORTANCE Lumpy skin disease virus (LSDV) is a high consequence pathogen of cattle that is rapidly expanding its geographical boundaries into new regions such as Europe and Asia. This expansion is promoted by the mechanical transmission of the virus via hematogenous arthropods. This study quantifies the acquisition and retention of LSDV by four species of blood-feeding insects and reveals that the cutaneous lesions of LSD provide the high titer virus source necessary for virus acquisition by the insects. An artificial membrane feeding system containing a high titer of LSDV was shown to be comparable to a skin lesion on a clinically affected animal when used as a virus source. This promotes the use of these laboratory-based systems as replacements for some animal studies. Overall, this work advances our understanding of the mechanical vector-borne transmission of LSDV and provides evidence to support the design of more effective disease control programmes.


Assuntos
Sangue , Dípteros , Comportamento Alimentar , Insetos Vetores , Doença Nodular Cutânea , Vírus da Doença Nodular Cutânea , Aedes/anatomia & histologia , Aedes/virologia , Animais , Bovinos/virologia , Ceratopogonidae/anatomia & histologia , Ceratopogonidae/virologia , Culex/anatomia & histologia , Culex/virologia , Dípteros/anatomia & histologia , Dípteros/fisiologia , Dípteros/virologia , Insetos Vetores/anatomia & histologia , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Doença Nodular Cutânea/virologia , Vírus da Doença Nodular Cutânea/isolamento & purificação , Vírus da Doença Nodular Cutânea/fisiologia , Membranas Artificiais , Muscidae/anatomia & histologia , Muscidae/virologia , Fatores de Tempo
6.
J Virol ; 95(20): e0035521, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34319783

RESUMO

Alphaviruses have positive-strand RNA genomes containing two open reading frames (ORFs). The first ORF encodes the nonstructural (ns) polyproteins P123 and P1234 that act as precursors for the subunits of the viral RNA replicase (nsP1 to nsP4). Processing of P1234 leads to the formation of a negative-strand replicase consisting of nsP4 (RNA polymerase) and P123 components. Subsequent processing of P123 results in a positive-strand replicase. The second ORF encoding the structural proteins is expressed via the synthesis of a subgenomic RNA. Alphavirus replicase is capable of using template RNAs that contain essential cis-active sequences. Here, we demonstrate that the replicases of nine alphaviruses, expressed in the form of separate P123 and nsP4 components, are active. Their activity depends on the abundance of nsP4. The match of nsP4 to its template strongly influences efficient subgenomic RNA synthesis. nsP4 of Barmah Forest virus (BFV) formed a functional replicase only with matching P123, while nsP4s of other alphaviruses were compatible also with several heterologous P123s. The P123 components of Venezuelan equine encephalitis virus and Sindbis virus (SINV) required matching nsP4s, while P123 of other viruses could form active replicases with different nsP4s. Chimeras of Semliki Forest virus, harboring the nsP4 of chikungunya virus, Ross River virus, BFV, or SINV were viable. In contrast, chimeras of SINV, harboring an nsP4 from different alphaviruses, exhibited a temperature-sensitive phenotype. These findings highlight the possibility for formation of new alphaviruses via recombination events and provide a novel approach for the development of attenuated chimeric viruses for vaccination strategies. IMPORTANCE A key element of every virus with an RNA genome is the RNA replicase. Understanding the principles of RNA replicase formation and functioning is therefore crucial for understanding and responding to the emergence of new viruses. Reconstruction of the replicases of nine alphaviruses from nsP4 and P123 polyproteins revealed that the nsP4 of the majority of alphaviruses, including the mosquito-specific Eilat virus, could form a functional replicase with P123 originating from a different virus, and the corresponding chimeric viruses were replication-competent. nsP4 also had an evident role in determining the template RNA preference and the efficiency of RNA synthesis. The revealed broad picture of the compatibility of the replicase components of alphaviruses is important for understanding the formation and functioning of the alphavirus RNA replicase and highlights the possibilities for recombination between different alphavirus species.


Assuntos
Alphavirus/genética , Proteínas não Estruturais Virais/metabolismo , Proteínas do Complexo da Replicase Viral/genética , Alphavirus/metabolismo , Infecções por Alphavirus/genética , Animais , Sequência de Bases , Linhagem Celular , RNA Polimerases Dirigidas por DNA/metabolismo , Humanos , Poliproteínas/metabolismo , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas do Complexo da Replicase Viral/metabolismo , Replicação Viral/genética , Replicação Viral/fisiologia
7.
J Virol ; 95(9)2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33568514

RESUMO

Lumpy skin disease virus (LSDV) is a vector-transmitted poxvirus that causes disease in cattle. Vector species involved in LSDV transmission and their ability to acquire and transmit the virus are poorly characterized. Using a highly representative bovine experimental model of lumpy skin disease, we fed four model vector species (Aedes aegypti, Culex quinquefasciatus, Stomoxys calcitrans, and Culicoides nubeculosus) on LSDV-inoculated cattle in order to examine their acquisition and retention of LSDV. Subclinical disease was a more common outcome than clinical disease in the inoculated cattle. Importantly, the probability of vectors acquiring LSDV from a subclinical animal (0.006) was very low compared with that from a clinical animal (0.23), meaning an insect feeding on a subclinical animal was 97% less likely to acquire LSDV than one feeding on a clinical animal. All four potential vector species studied acquired LSDV from the host at a similar rate, but Aedes aegypti and Stomoxys calcitrans retained the virus for a longer time, up to 8 days. There was no evidence of virus replication in the vector, consistent with mechanical rather than biological transmission. The parameters obtained in this study were combined with data from studies of LSDV transmission and vector life history parameters to determine the basic reproduction number of LSDV in cattle mediated by each of the model species. This reproduction number was highest for Stomoxys calcitrans (19.1), followed by C. nubeculosus (7.1) and Ae. aegypti (2.4), indicating that these three species are potentially efficient transmitters of LSDV; this information can be used to inform LSD control programs.IMPORTANCE Lumpy skin disease virus (LSDV) causes a severe systemic disease characterized by cutaneous nodules in cattle. LSDV is a rapidly emerging pathogen, having spread since 2012 into Europe and Russia and across Asia. The vector-borne nature of LSDV transmission is believed to have promoted this rapid geographic spread of the virus; however, a lack of quantitative evidence about LSDV transmission has hampered effective control of the disease during the current epidemic. Our research shows subclinical cattle play little part in virus transmission relative to clinical cattle and reveals a low probability of virus acquisition by insects at the preclinical stage. We have also calculated the reproductive number of different insect species, therefore identifying efficient transmitters of LSDV. This information is of utmost importance, as it will help to define epidemiological control measures during LSDV epidemics and of particular consequence in resource-poor regions where LSD vaccination may be less than adequate.


Assuntos
Insetos Vetores , Doença Nodular Cutânea/transmissão , Vírus da Doença Nodular Cutânea/fisiologia , Animais , Bovinos , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Masculino , Replicação Viral
8.
PLoS Pathog ; 16(9): e1008825, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32886709

RESUMO

Most alphaviruses (family Togaviridae) including Sindbis virus (SINV) and other human pathogens, are transmitted by arthropods. The first open reading frame in their positive strand RNA genome encodes for the non-structural polyprotein, a precursor to four separate subunits of the replicase. The replicase interacts with cis-acting elements located near the intergenic region and at the ends of the viral RNA genome. A trans-replication assay was developed and used to analyse the template requirements for nine alphavirus replicases. Replicases of alphaviruses of the Semliki Forest virus complex were able to cross-utilize each other's templates as well as those of outgroup alphaviruses. Templates of outgroup alphaviruses, including SINV and the mosquito-specific Eilat virus, were promiscuous; in contrast, their replicases displayed a limited capacity to use heterologous templates, especially in mosquito cells. The determinants important for efficient replication of template RNA were mapped to the 5' region of the genome. For SINV these include the extreme 5'- end of the genome and sequences corresponding to the first stem-loop structure in the 5' untranslated region. Mutations introduced in these elements drastically reduced infectivity of recombinant SINV genomes. The trans-replicase tools and approaches developed here can be instrumental in studying alphavirus recombination and evolution, but can also be applied to study other viruses such as picornaviruses, flaviviruses and coronaviruses.


Assuntos
Alphavirus , Genoma Viral , Conformação de Ácido Nucleico , RNA Viral , RNA Polimerase Dependente de RNA , Proteínas Virais , Alphavirus/química , Alphavirus/genética , Alphavirus/metabolismo , Linhagem Celular Tumoral , Células HEK293 , Humanos , RNA Viral/química , RNA Viral/genética , RNA Viral/metabolismo , RNA Polimerase Dependente de RNA/química , RNA Polimerase Dependente de RNA/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
9.
J Evol Biol ; 34(2): 319-330, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33159350

RESUMO

The satyr of Greek mythology was half-man, half-goat, with an animal persona signifying immoderate sexual appetites. In biology, satyrization is the disruption of reproduction in matings between closely related species. Interestingly, its effects are often reciprocally asymmetric, manifesting more strongly in one direction of heterospecific mating than the other. Heterospecific matings are well known to result in female fitness costs due to the production of sterile or inviable hybrid offspring and can also occur due to reduced female sexual receptivity, lowering the likelihood of any subsequent conspecific matings. Here we investigated the costs and mechanisms of satyrization in the Drosophila melanogaster species subgroup of fruitflies. The results showed that D. simulans females experienced higher fitness costs from a loss of remating opportunities due to significantly reduced post-mating sexual receptivity than did D. melanogaster females, as a result of reciprocal heterospecific matings. Reciprocal tests of the effects of male reproductive accessory gland protein (Acp) injections on female receptivity in pairwise comparisons between D. melanogaster and five other species within the melanogaster species subgroup revealed significant post-mating receptivity asymmetries. This was due to variation in the effects of heterospecific Acps within species with which D. melanogaster can mate, and significant but nonasymmetric Acp effects in species with which it cannot. We conclude that asymmetric satyrization due to post-mating effects of Acps may be common among diverging and hybridising species. The findings are of interest in understanding the evolution of reproductive isolation and species divergence.


Assuntos
Drosophila melanogaster/fisiologia , Drosophila simulans/fisiologia , Isolamento Reprodutivo , Comportamento Sexual Animal , Animais , Proteínas de Drosophila , Feminino , Masculino
10.
J Virol ; 93(18)2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31217251

RESUMO

Chikungunya virus (CHIKV) is a mosquito-borne alphavirus. It has a positive-sense RNA genome that also serves as the mRNA for four nonstructural proteins (nsPs) representing subunits of the viral replicase. Coupling of nsP and RNA synthesis complicates analysis of viral RNA replication. We developed trans-replication systems, where production of replication-competent RNA and expression of viral replicase are uncoupled. Mammalian and mosquito RNA polymerase I promoters were used to produce noncapped RNA templates, which are poorly translated relative to CHIKV replicase-generated capped RNAs. It was found that, in human cells, constructs driven by RNA polymerase I promoters of human and Chinese hamster origin performed equally well. In contrast, RNA polymerase I promoters from Aedes mosquitoes exhibited strong species specificity. In both mammalian and mosquito cells, novel trans-replicase assays had exceptional sensitivity, with up to 105-fold higher reporter expression in the presence of replicase relative to background. Using this highly sensitive assay to analyze CHIKV nsP1 functionality, several mutations that severely reduced, but did not completely block, CHIKV replicase activity were identified: (i) nsP1 tagged at its N terminus with enhanced green fluorescent protein; (ii) mutations D63A and Y248A, blocking the RNA capping; and (iii) mutation R252E, affecting nsP1 membrane anchoring. In contrast, a mutation in the nsP1 palmitoylation site completely inactivated CHIKV replicase in both human and mosquito cells and was lethal for the virus. Our data confirm that this novel system provides a valuable tool to study CHIKV replicase, RNA replication, and virus-host interactions.IMPORTANCE Chikungunya virus (CHIKV) is a medically important pathogen responsible for recent large-scale epidemics. The development of efficient therapies against CHIKV has been hampered by gaps in our understanding of how nonstructural proteins (nsPs) function to form the viral replicase and replicate virus RNA. Here we describe an extremely sensitive assay to analyze the effects of mutations on the virus RNA synthesis machinery in cells of both mammalian (host) and mosquito (vector) origin. Using this system, several lethal mutations in CHIKV nsP1 were shown to reduce but not completely block the ability of its replicase to synthesize viral RNAs. However, in contrast to related alphaviruses, CHIKV replicase was completely inactivated by mutations preventing palmitoylation of nsP1. These data can be used to develop novel, virus-specific antiviral treatments.


Assuntos
RNA Polimerase I/metabolismo , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/fisiologia , Aedes/virologia , Animais , Antivirais/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Febre de Chikungunya/virologia , Vírus Chikungunya/metabolismo , Chlorocebus aethiops , Humanos , Mamíferos/genética , Mosquitos Vetores , Mutação , RNA Polimerase I/fisiologia , RNA Viral/genética , Células Vero , Proteínas não Estruturais Virais/genética
11.
J Theor Biol ; 479: 14-21, 2019 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-31260669

RESUMO

A range of gene drive systems have been proposed that are predicted to increase their frequency and that of associated desirable genetic material even if they confer a fitness cost on individuals carrying them. Engineered underdominance (UD) is such a system and, in one version, is based on the introduction of two independently segregating transgenic constructs each carrying a lethal gene, a suppressor for the lethal at the other locus and a desirable genetic "cargo". Under this system individuals carrying at least one copy of each construct (or no copies of either) are viable whilst those that possess just one of the transgenic constructs are non-viable. Previous theoretical work has explored various properties of these systems, concluding that they should persist indefinitely in absence of resistance or mutation. Here we study a population genetics model of UD gene drive that relaxes past assumptions by allowing for loss-of-function mutations in each introduced gene. We demonstrate that mutations are likely to cause UD systems to break down, eventually resulting in the elimination of introduced transgenes. We then go on to investigate the potential of releasing "free suppressor" carrying individuals as a new method for reversing UD gene drives and compare this to the release of wild-types; the only previously proposed reversal strategy for UD. This reveals that while free suppressor carrying individuals may represent an inexpensive reversal strategy due to extremely small release requirements, they are not able to return a fully wild-type population as rapidly as the release of wild-types.


Assuntos
Tecnologia de Impulso Genético/métodos , Mutação com Perda de Função , Modelos Genéticos , Animais , Animais Geneticamente Modificados , Genética Populacional , Transgenes
12.
PLoS Comput Biol ; 14(3): e1006059, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29570717

RESUMO

A number of different genetics-based vector control methods have been proposed. Two approaches currently under development in Aedes aegypti mosquitoes are the two-locus engineered underdominance and killer-rescue gene drive systems. Each of these is theoretically capable of increasing in frequency within a population, thus spreading associated desirable genetic traits. Thus they have gained attention for their potential to aid in the fight against various mosquito-vectored diseases. In the case of engineered underdominance, introduced transgenes are theoretically capable of persisting indefinitely (i.e. it is self-sustaining) whilst in the killer-rescue system the rescue component should initially increase in frequency (while the lethal component (killer) is common) before eventually declining (when the killer is rare) and being eliminated (i.e. it is temporally self-limiting). The population genetics of both systems have been explored using discrete generation mathematical models. The effects of various ecological factors on these two systems have also been considered using alternative modelling methodologies. Here we formulate and analyse new mathematical models combining the population dynamics and population genetics of these two classes of gene drive that incorporate ecological factors not previously studied and are simple enough to allow the effects of each to be disentangled. In particular, we focus on the potential effects that may be obtained as a result of differing ecological factors such as strengths of larval competition; numbers of breeding sites; and the relative fitness of transgenic mosquitoes compared with their wild-type counterparts. We also extend our models to consider population dynamics in two demes in order to explore the effects of dispersal between neighbouring populations on the outcome of UD and KR gene drive systems.


Assuntos
Tecnologia de Impulso Genético/métodos , Tecnologia de Impulso Genético/estatística & dados numéricos , Mosquitos Vetores/genética , Aedes/genética , Animais , Animais Geneticamente Modificados , Vetores de Doenças , Engenharia Genética/métodos , Genética Populacional/métodos , Modelos Genéticos , Modelos Teóricos , Dinâmica Populacional , Transgenes
13.
BMC Biol ; 21(1): 289, 2023 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-38155354
14.
Biochem Soc Trans ; 46(5): 1203-1212, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30190331

RESUMO

Mosquito-borne diseases, such as malaria, dengue and chikungunya, cause morbidity and mortality around the world. Recent advances in gene drives have produced control methods that could theoretically modify all populations of a disease vector, from a single release, making whole species less able to transmit pathogens. This ability has caused both excitement, at the prospect of global eradication of mosquito-borne diseases, and concern around safeguards. Drive mechanisms that require individuals to be released at high frequency before genes will spread can therefore be desirable as they are potentially localised and reversible. These include underdominance-based strategies and use of the reproductive parasite Wolbachia Here, we review recent advances in practical applications and mathematical analyses of these threshold-dependent gene drives with a focus on implementation in Aedes aegypti, highlighting their mechanisms and the role of fitness costs on introduction frequencies. Drawing on the parallels between these systems offers useful insights into practical, controlled application of localised drives, and allows us to assess the requirements needed for gene drive reversal.


Assuntos
Aedes/microbiologia , Aedes/virologia , Tecnologia de Impulso Genético , Mosquitos Vetores/fisiologia , Animais , Febre de Chikungunya , Dengue , Drosophila/microbiologia , Haploinsuficiência , Heterozigoto , Malária , Modelos Teóricos , Mosquitos Vetores/genética , Interferência de RNA , Reprodução , Wolbachia
16.
J Theor Biol ; 430: 128-140, 2017 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-28728996

RESUMO

Engineered underdominance is one of a number of different gene drive strategies that have been proposed for the genetic control of insect vectors of disease. Here we model a two-locus engineered underdominance based gene drive system that is based on the concept of mutually suppressing lethals. In such a system two genetic constructs are introduced, each possessing a lethal element and a suppressor of the lethal at the other locus. Specifically, we formulate and analyse a population genetics model of this system to assess when different combinations of release strategies (i.e. single or multiple releases of both sexes or males only) and genetic systems (i.e. bisex lethal or female-specific lethal elements and different strengths of suppressors) will give population replacement or fail to do so. We anticipate that results presented here will inform the future design of engineered underdominance gene drive systems as well as providing a point of reference regarding release strategies for those looking to test such a system. Our discussion is framed in the context of genetic control of insect vectors of disease. One of several serious threats in this context are Aedes aegypti mosquitoes as they are the primary vectors of dengue viruses. However, results are also applicable to Ae. aegypti as vectors of Zika, yellow fever and chikungunya viruses and also to the control of a number of other insect species and thereby of insect-vectored pathogens.


Assuntos
Tecnologia de Impulso Genético , Insetos Vetores/genética , Aedes/genética , Aedes/virologia , Animais , Animais Geneticamente Modificados , Dengue/prevenção & controle , Vírus da Dengue , Feminino , Genética Populacional , Insetos Vetores/virologia , Masculino , Controle de Mosquitos/métodos , Viroses/prevenção & controle
17.
BMC Biol ; 14: 80, 2016 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-27643991

RESUMO

Release of sterile insects, the Sterile Insect Technique (SIT), can be an extremely effective and precise method of pest control. A study in BMC Biology from the New World screwworm SIT program and others shows that modern genetic methods can provide major improvements even to this well-established and highly successful SIT program.See research article: https://bmcbiol.biomedcentral.com/articles/10.1186/s12915-016-0296-8.


Assuntos
Dípteros/fisiologia , Técnicas Genéticas , Controle Biológico de Vetores/métodos , Esterilização , Animais , Feminino , Masculino
18.
Proc Natl Acad Sci U S A ; 110(17): 6766-70, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23569267

RESUMO

Transgene-based genetic sexing methods are being developed for insects of agricultural and public health importance. Male-only rearing has long been sought in sericulture because males show superior economic characteristics, such as better fitness, lower food consumption, and higher silk yield. Here we report the establishment of a transgene-based genetic sexing system for the silkworm, Bombyx mori. We developed a construct in which a positive feedback loop regulated by sex-specific alternative splicing leads to high-level expression of the tetracycline-repressible transactivator in females only. Transgenic animals show female-specific lethality during embryonic and early larval stages, leading to male-only cocoons. This transgene-based female-specific lethal system not only has wide application in sericulture, but also has great potential in lepidopteran pest control.


Assuntos
Processamento Alternativo/genética , Bombyx/genética , Cruzamento/métodos , Genes Letais/genética , Caracteres Sexuais , Animais , Bombyx/fisiologia , Clonagem Molecular , Primers do DNA/genética , Feminino , Immunoblotting , Masculino , Microscopia de Fluorescência , Controle Biológico de Vetores/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Seda/biossíntese , Tetraciclina/farmacologia , Transativadores/metabolismo
19.
PLoS Genet ; 9(10): e1003885, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204300

RESUMO

In multicellular organisms, tight regulation of gene expression ensures appropriate tissue and organismal growth throughout development. Reversible phosphorylation of the RNA Polymerase II (RNAPII) C-terminal domain (CTD) is critical for the regulation of gene expression states, but how phosphorylation is actively modified in a developmental context remains poorly understood. Protein phosphatase 1 (PP1) is one of several enzymes that has been reported to dephosphorylate the RNAPII CTD. However, PP1's contribution to transcriptional regulation during animal development and the mechanisms by which its activity is targeted to RNAPII have not been fully elucidated. Here we show that the Drosophila orthologue of the PP1 Nuclear Targeting Subunit (dPNUTS) is essential for organismal development and is cell autonomously required for growth of developing tissues. The function of dPNUTS in tissue development depends on its binding to PP1, which we show is targeted by dPNUTS to RNAPII at many active sites of transcription on chromosomes. Loss of dPNUTS function or specific disruption of its ability to bind PP1 results in hyperphosphorylation of the RNAPII CTD in whole animal extracts and on chromosomes. Consistent with dPNUTS being a global transcriptional regulator, we find that loss of dPNUTS function affects the expression of the majority of genes in developing 1(st) instar larvae, including those that promote proliferative growth. Together, these findings shed light on the in vivo role of the PNUTS-PP1 holoenzyme and its contribution to the control of gene expression during early Drosophila development.


Assuntos
Drosophila melanogaster/genética , Proteína Fosfatase 1/biossíntese , RNA Polimerase II/genética , Transcrição Gênica , Animais , Domínio Catalítico/genética , Proteínas de Ligação a DNA/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Fosforilação/genética , Proteína Fosfatase 1/química , Proteína Fosfatase 1/genética , Estrutura Terciária de Proteína/genética , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/genética
20.
BMC Biol ; 13: 49, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26179401

RESUMO

BACKGROUND: Development and evaluation of new insect pest management tools is critical for overcoming over-reliance upon, and growing resistance to, synthetic, biological and plant-expressed insecticides. For transgenic crops expressing insecticidal proteins from the bacterium Bacillus thuringiensis ('Bt crops') emergence of resistance is slowed by maintaining a proportion of the crop as non-Bt varieties, which produce pest insects unselected for resistance. While this strategy has been largely successful, multiple cases of Bt resistance have now been reported. One new approach to pest management is the use of genetically engineered insects to suppress populations of their own species. Models suggest that released insects carrying male-selecting (MS) transgenes would be effective agents of direct, species-specific pest management by preventing survival of female progeny, and simultaneously provide an alternative insecticide resistance management strategy by introgression of susceptibility alleles into target populations. We developed a MS strain of the diamondback moth, Plutella xylostella, a serious global pest of crucifers. MS-strain larvae are reared as normal with dietary tetracycline, but, when reared without tetracycline or on host plants, only males will survive to adulthood. We used this strain in glasshouse-cages to study the effect of MS male P. xylostella releases on target pest population size and spread of Bt resistance in these populations. RESULTS: Introductions of MS-engineered P. xylostella males into wild-type populations led to rapid pest population decline, and then elimination. In separate experiments on broccoli plants, relatively low-level releases of MS males in combination with broccoli expressing Cry1Ac (Bt broccoli) suppressed population growth and delayed the spread of Bt resistance. Higher rates of MS male releases in the absence of Bt broccoli were also able to suppress P. xylostella populations, whereas either low-level MS male releases or Bt broccoli alone did not. CONCLUSIONS: These results support theoretical modeling, indicating that MS-engineered insects can provide a powerful pest population suppressing effect, and could effectively augment current Bt resistance management strategies. We conclude that, subject to field confirmation, MS insects offer an effective and versatile control option against P. xylostella and potentially other pests, and may reduce reliance on and protect insecticide-based approaches, including Bt crops.


Assuntos
Animais Geneticamente Modificados/genética , Brassica/parasitologia , Produtos Agrícolas/parasitologia , Resistência a Inseticidas , Mariposas/genética , Controle Biológico de Vetores/métodos , Transgenes , Animais , Bacillus thuringiensis/genética , Brassica/genética , Produtos Agrícolas/genética , Feminino , Engenharia Genética , Masculino , Mariposas/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/parasitologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa