Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 27(11): 4536-4549, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35902629

RESUMO

Major depressive disorder (MDD) is the leading cause of disability worldwide. There is an urgent need for objective biomarkers to diagnose this highly heterogeneous syndrome, assign treatment, and evaluate treatment response and prognosis. MicroRNAs (miRNAs) are short non-coding RNAs, which are detected in body fluids that have emerged as potential biomarkers of many disease conditions. The present study explored the potential use of miRNAs as biomarkers for MDD and its treatment. We profiled the expression levels of circulating blood miRNAs from mice that were collected before and after exposure to chronic social defeat stress (CSDS), an extensively validated mouse model used to study depression, as well as after either repeated imipramine or single-dose ketamine treatment. We observed robust differences in blood miRNA signatures between stress-resilient and stress-susceptible mice after an incubation period, but not immediately after exposure to the stress. Furthermore, ketamine treatment was more effective than imipramine at re-establishing baseline miRNA expression levels, but only in mice that responded behaviorally to the drug. We identified the red blood cell-specific miR-144-3p as a candidate biomarker to aid depression diagnosis and predict ketamine treatment response in stress-susceptible mice and MDD patients. Lastly, we demonstrate that systemic knockdown of miR-144-3p, via subcutaneous administration of a specific antagomir, is sufficient to reduce the depression-related phenotype in stress-susceptible mice. RNA-sequencing analysis of blood after such miR-144-3p knockdown revealed a blunted transcriptional stress signature as well. These findings identify miR-144-3p as a novel target for diagnosis of MDD as well as for antidepressant treatment, and enhance our understanding of epigenetic processes associated with depression.


Assuntos
Transtorno Depressivo Maior , Ketamina , MicroRNAs , Camundongos , Animais , Transtorno Depressivo Maior/diagnóstico , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/genética , MicroRNAs/metabolismo , Biomarcadores , Epigênese Genética , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Ketamina/farmacologia , Ketamina/uso terapêutico
2.
Neurobiol Stress ; 22: 100505, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36620306

RESUMO

Background: Stress exposure is a key risk factor for the development of major depressive disorder and posttraumatic stress disorder. Enhancing stress resilience in at-risk populations could potentially protect against stress-induced disorders. The administration of ketamine one week prior to an acute stressor prevents the development of stress-induced depressive-like behavior in rodents. This study aimed to test if the prophylactic effect of ketamine against stress also applies to humans. Methods: We conducted a double-blind, placebo-controlled study wherein 24 healthy subjects (n = 11 males) were randomized to receive either ketamine (0.5 mg/kg) or midazolam (0.045 mg/kg) intravenously one week prior to an acute stress [Trier Social Stress Test (TSST)]. The primary endpoint was the anxious-composed subscale of the Profile of Mood States Bipolar Scale (POMS-Bi) administered immediately after the TSST. Salivary and plasma cortisol and salivary alpha amylase were also measured at 15-min intervals for 60 min following the stressor, as proxies of hypothalamic pituitary adrenal (HPA) and sympathetic-adrenal-medullary (SAM) axis activity, respectively. Results: Compared to the midazolam group (n = 12), the ketamine group (n = 12) showed a moderate to large (Cohen's d = 0.7) reduction in levels of anxiety immediately following stress, although this was not significant (p = 0.06). There was no effect of group on change in salivary cortisol or salivary alpha amylase following stress. We conducted a secondary analysis excluding one participant who did not show an expected correlation between plasma and salivary cortisol (n = 23, ketamine n = 11). In this subgroup, we observed a significant reduction in the level of salivary alpha amylase in the ketamine group compared to midazolam (Cohen's d = 0.7, p = 0.03). No formal adjustment for multiple testing was made as this is a pilot study and all secondary analyses are considered hypothesis-generating. Conclusions: Ketamine was associated with a numeric reduction in TSST-induced anxiety, equivalent to a medium-to-large effect size. However, this did not reach statistical significance . In a subset of subjects, ketamine appeared to blunt SAM reactivity following an acute stressor. Future studies with larger sample size are required to further investigate the pro-resilient effect of ketamine.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa