Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Development ; 136(19): 3301-9, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19736325

RESUMO

The canonical Wnt and sonic hedgehog (Shh) pathways have been independently linked to cell proliferation in a variety of tissues and systems. However, interaction of these signals in the control of cell cycle progression has not been studied. Here, we demonstrate that in the developing vertebrate nervous system these pathways genetically interact to control progression of the G1 phase of the cell cycle. By in vivo loss-of-function experiments, we demonstrate the absolute requirement of an upstream Shh activity for the regulation of Tcf3/4 expression. In the absence of Tcf3/4, the canonical Wnt pathway cannot activate target gene expression, including that of cyclin D1, and the cell cycle is necessarily arrested at G1. In addition to the control of G1 progression, Shh activity controls the G2 phase through the regulation of cyclin E, cyclin A and cyclin B expression, and this is achieved independently of Wnt. Thus, in neural progenitors, cell cycle progression is co-ordinately regulated by Wnt and Shh activities.


Assuntos
Proteínas Hedgehog/fisiologia , Neurônios/citologia , Neurônios/fisiologia , Proteínas Wnt/fisiologia , Animais , Animais Geneticamente Modificados , Ciclo Celular , Proliferação de Células , Sistema Nervoso Central/citologia , Sistema Nervoso Central/embriologia , Embrião de Galinha , Ciclina D1/genética , Ciclina D1/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/deficiência , Proteínas Hedgehog/genética , Humanos , Camundongos , Camundongos Knockout , Modelos Biológicos , Transdução de Sinais , Fatores de Transcrição TCF/genética , Fatores de Transcrição TCF/fisiologia , Proteína 1 Semelhante ao Fator 7 de Transcrição
2.
Nucleic Acids Res ; 38(5): e30, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20007146

RESUMO

Misfolded proteins are caused by genomic mutations, aberrant splicing events, translation errors or environmental factors. The accumulation of misfolded proteins is a phenomenon connected to several human disorders, and is managed by stress responses specific to the cellular compartments being affected. In wild-type cells these mechanisms of stress response can be experimentally induced by expressing recombinant misfolded proteins or by incubating cells with large concentrations of amino acid analogues. Here, we report a novel approach for the induction of stress responses to protein aggregation. Our method is based on engineered transfer RNAs that can be expressed in cells or tissues, where they actively integrate in the translation machinery causing general proteome substitutions. This strategy allows for the introduction of mutations of increasing severity randomly in the proteome, without exposing cells to unnatural compounds. Here, we show that this approach can be used for the differential activation of the stress response in the Endoplasmic Reticulum (ER). As an example of the applications of this method, we have applied it to the identification of human microRNAs activated or repressed during unfolded protein stress.


Assuntos
Proteoma/genética , RNA de Transferência de Serina/química , Resposta a Proteínas não Dobradas/genética , Animais , Processos de Crescimento Celular , Linhagem Celular , Sobrevivência Celular , Embrião de Galinha , Interpretação Estatística de Dados , Humanos , MicroRNAs/classificação , MicroRNAs/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Biossíntese de Proteínas , RNA de Transferência de Serina/metabolismo
3.
Development ; 135(2): 237-47, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18057099

RESUMO

Dorsoventral patterning of the vertebrate nervous system is achieved by the combined activity of morphogenetic signals secreted from dorsal and ventral signalling centres. The Shh/Gli pathway plays a major role in patterning the ventral neural tube; however, the molecular mechanisms that limit target gene responses to specific progenitor domains remain unclear. Here, we show that Wnt1/Wnt3a, by signalling through the canonical beta-catenin/Tcf pathway, control expression of dorsal genes and suppression of the ventral programme, and that this role in DV patterning depends on Gli activity. Additionally, we show that Gli3 expression is controlled by Wnt activity. Identification and characterization of highly conserved non-coding DNA regions around the human Gli3 gene revealed the presence of transcriptionally active Tcf-binding sequences. These indicated that dorsal Gli3 expression might be directly regulated by canonical Wnt activity. In turn, Gli3, by acting as a transcriptional repressor, restricted graded Shh/Gli ventral activity to properly pattern the spinal cord.


Assuntos
Padronização Corporal , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Proteínas do Tecido Nervoso/genética , Proteínas Wnt/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem da Célula , Embrião de Galinha , Galinhas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Proteínas Hedgehog/genética , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Proteínas do Tecido Nervoso/metabolismo , Tubo Neural/embriologia , Tubo Neural/metabolismo , Transdução de Sinais , Medula Espinal/metabolismo , Proteínas Wnt/genética , Proteína Gli3 com Dedos de Zinco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa