Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 69(4): 470-483, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37290124

RESUMO

Worldwide, the incidence of both preterm births and chronic lung disease of infancy, or bronchopulmonary dysplasia, remains high. Infants with bronchopulmonary dysplasia have larger and fewer alveoli, a lung pathology that can persist into adulthood. Although recent data point to a role for hypoxia-inducible factor-1α (HIF-1α) in mediating pulmonary angiogenesis and alveolarization, the cell-specific role of HIF-1α remains incompletely understood. Thus, we hypothesized that HIF-1α, in a distinct subset of mesenchymal cells, mediates postnatal alveolarization. To test the hypothesis, we generated mice with a cell-specific deletion of HIF-1α by crossing SM22α promoter-driven Cre mice with HIF-1αflox/flox mice (SM22α-HIF-1α-/-), determined SM-22α-expressing cell identity using single-cell RNA sequencing, and interrogated samples from preterm infants. Deletion of HIF-1α in SM22α-expressing cells had no effect on lung structure at day 3 of life. However, at 8 days, there were fewer and larger alveoli, a difference that persisted into adulthood. Microvascular density, elastin organization, and peripheral branching of the lung vasculature were decreased in SM22α-HIF-1α-/- mice, compared with control mice. Single-cell RNA sequencing demonstrated that three mesenchymal cell subtypes express SM22α: myofibroblasts, airway smooth muscle cells, and vascular smooth muscle cells. Pulmonary vascular smooth muscle cells from SM22α-HIF-1α-/- mice had decreased angiopoietin-2 expression and, in coculture experiments, a diminished capacity to promote angiogenesis that was rescued by angiopoietin-2. Angiopoietin-2 expression in tracheal aspirates of preterm infants was inversely correlated with overall mechanical ventilation time, a marker of disease severity. We conclude that SM22α-specific HIF-1α expression drives peripheral angiogenesis and alveolarization in the lung, perhaps by promoting angiopoietin-2 expression.


Assuntos
Angiopoietina-2 , Displasia Broncopulmonar , Subunidade alfa do Fator 1 Induzível por Hipóxia , Animais , Humanos , Recém-Nascido , Camundongos , Angiopoietina-2/metabolismo , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Displasia Broncopulmonar/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Recém-Nascido Prematuro , Pulmão/patologia
2.
Am J Physiol Lung Cell Mol Physiol ; 325(3): L299-L313, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37310763

RESUMO

Pulmonary angiogenesis drives alveolarization, but the transcriptional regulators directing pulmonary angiogenesis remain poorly defined. Global, pharmacological inhibition of nuclear factor-kappa B (NF-κB) impairs pulmonary angiogenesis and alveolarization. However, establishing a definitive role for NF-κB in pulmonary vascular development has been hindered by embryonic lethality induced by constitutive deletion of NF-κB family members. We created a mouse model allowing inducible deletion of the NF-κB activator, IKKß, in endothelial cells (ECs) and assessed the effect on lung structure, endothelial angiogenic function, and the lung transcriptome. Embryonic deletion of IKKß permitted lung vascular development but resulted in a disorganized vascular plexus, while postnatal deletion significantly decreased radial alveolar counts, vascular density, and proliferation of both endothelial and nonendothelial lung cells. Loss of IKKß impaired survival, proliferation, migration, and angiogenesis in primary lung ECs in vitro, in association with decreased expression of VEGFR2 and activation of downstream effectors. Loss of endothelial IKKß in vivo induced broad changes in the lung transcriptome with downregulation of genes related to mitotic cell cycle, extracellular matrix (ECM)-receptor interaction, and vascular development, and the upregulation of genes related to inflammation. Computational deconvolution suggested that loss of endothelial IKKß decreased general capillary, aerocyte capillary, and alveolar type I cell abundance. Taken together, these data definitively establish an essential role for endogenous endothelial IKKß signaling during alveolarization. A deeper understanding of the mechanisms directing this developmental, physiological activation of IKKß in the lung vasculature may provide novel targets for the development of strategies to enhance beneficial proangiogenic signaling in lung development and disease.NEW & NOTEWORTHY This study highlights the cell-specific complexity of nuclear factor kappa B signaling in the developing lung by demonstrating that inducible loss of IKKß in endothelial cells impairs alveolarization, disrupts EC angiogenic function, and broadly represses genes important for vascular development.


Assuntos
Quinase I-kappa B , NF-kappa B , Animais , Camundongos , Células Endoteliais/metabolismo , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Pulmão/metabolismo , Neovascularização Fisiológica/genética , NF-kappa B/metabolismo , Alvéolos Pulmonares/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
3.
Am J Physiol Lung Cell Mol Physiol ; 325(6): L741-L755, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37847687

RESUMO

Pulmonary arterial hypertension (PAH) is a disease characterized by increased vasoconstriction and vascular remodeling. Pulmonary artery smooth muscle cells (PASMCs) highly express the transcription factor hypoxia-inducible factor-1α (HIF-1α), yet the role of PASMC HIF-1α in the development of PAH remains controversial. To study the role of SMC HIF-1α in the pulmonary vascular response to acute and chronic hypoxia, we used a gain-of-function strategy to stabilize HIF-1α in PASMC by generating mice lacking prolyl hydroxylase domain (PHD) 1 and 2 in SM22α-expressing cells. This strategy increased HIF-1α expression and transcriptional activity under conditions of normoxia and hypoxia. Acute hypoxia increased right ventricular systolic pressure (RVSP) in control, but not in SM22α-PHD1/2-/- mice. Chronic hypoxia increased RVSP and vascular remodeling more in control SM22α-PHD1/2+/+ than in SM22α-PHD1/2-/- mice. In vitro studies demonstrated increased contractility and myosin light chain phosphorylation in isolated PHD1/2+/+ compared with PHD1/2-/- PASMC under both normoxic and hypoxic conditions. After chronic hypoxia, there was more p27 and less vascular remodeling in SM22α-PHD1/2-/- compared with SM22α-PHD1/2+/+ mice. Hypoxia increased p27 in PASMC isolated from control patients, but not in cells from patients with idiopathic pulmonary arterial hypertension (IPAH). These findings highlight an SM22α-expressing cell-specific role for HIF-1α in the inhibition of pulmonary vasoconstriction and vascular remodeling. Modulating HIF-1α expression in PASMC may represent a promising preventative and therapeutic strategy for patients with PAH.NEW & NOTEWORTHY In a mouse model wherein hypoxia-inducible factor 1 alpha (HIF-1α) is stabilized in vascular smooth muscle cells, we found that HIF-1α regulates vasoconstriction by limiting phosphorylation of myosin light chain and regulates vascular remodeling through p27 induction. These findings highlight a cell-specific role for HIF-1α in the inhibition of pulmonary vasoconstriction and vascular remodeling.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Humanos , Camundongos , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Miócitos de Músculo Liso/metabolismo , Cadeias Leves de Miosina/metabolismo , Prolil Hidroxilases/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , Remodelação Vascular
4.
Eur Respir J ; 61(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024132

RESUMO

INTRODUCTION: Pulmonary arterial hypertension (PAH) is characterised by loss of microvessels. The Wnt pathways control pulmonary angiogenesis but their role in PAH is incompletely understood. We hypothesised that Wnt activation in pulmonary microvascular endothelial cells (PMVECs) is required for pulmonary angiogenesis, and its loss contributes to PAH. METHODS: Lung tissue and PMVECs from healthy and PAH patients were screened for Wnt production. Global and endothelial-specific Wnt7a -/- mice were generated and exposed to chronic hypoxia and Sugen-hypoxia (SuHx). RESULTS: Healthy PMVECs demonstrated >6-fold Wnt7a expression during angiogenesis that was absent in PAH PMVECs and lungs. Wnt7a expression correlated with the formation of tip cells, a migratory endothelial phenotype critical for angiogenesis. PAH PMVECs demonstrated reduced vascular endothelial growth factor (VEGF)-induced tip cell formation as evidenced by reduced filopodia formation and motility, which was partially rescued by recombinant Wnt7a. We discovered that Wnt7a promotes VEGF signalling by facilitating Y1175 tyrosine phosphorylation in vascular endothelial growth factor receptor 2 (VEGFR2) through receptor tyrosine kinase-like orphan receptor 2 (ROR2), a Wnt-specific receptor. We found that ROR2 knockdown mimics Wnt7a insufficiency and prevents recovery of tip cell formation with Wnt7a stimulation. While there was no difference between wild-type and endothelial-specific Wnt7a -/- mice under either chronic hypoxia or SuHx, global Wnt7a +/- mice in hypoxia demonstrated higher pulmonary pressures and severe right ventricular and lung vascular remodelling. Similar to PAH, Wnt7a +/- PMVECs exhibited an insufficient angiogenic response to VEGF-A that improved with Wnt7a. CONCLUSIONS: Wnt7a promotes VEGF signalling in lung PMVECs and its loss is associated with an insufficient VEGF-A angiogenic response. We propose that Wnt7a deficiency contributes to progressive small vessel loss in PAH.


Assuntos
Hipertensão Arterial Pulmonar , Camundongos , Animais , Hipertensão Arterial Pulmonar/complicações , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Hipertensão Pulmonar Primária Familiar/metabolismo , Hipóxia/metabolismo
5.
Am J Physiol Lung Cell Mol Physiol ; 323(2): L129-L141, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35762602

RESUMO

Though survival rates for preterm infants are improving, the incidence of chronic lung disease of infancy, or bronchopulmonary dysplasia (BPD), remains high. Histologically, BPD is characterized by larger and fewer alveoli. Hypoxia-inducible factors (HIFs) may be protective in the context of hyperoxia-induced lung injury, but the cell-specific effects of HIF expression in neonatal lung injury remain unknown. Thus, we sought to determine whether HIF stabilization in SM22α-expressing cells can limit hyperoxia-induced neonatal lung injury. We generated SM22α-specific HIF-1α-stabilized mice (SM22α-PHD1/2-/- mice) by cross-breeding SM22α-promotor-driven Cre recombinase mice with prolyl hydroxylase PHD1flox/flox and PHD2flox/flox mice. Neonatal mice were randomized to 21% O2 (normoxia) or 80% O2 (hyperoxia) exposure for 14 days. For the hyperoxia recovery studies, neonatal mice were recovered from normoxia for an additional 10 wk. SM22α-specific HIF-1α stabilization mitigated hyperoxia-induced lung injury and preserved microvessel density compared with control mice for both neonates and adults. In SM22α-PHD1/2-/- mice, pulmonary artery endothelial cells (PAECs) were more proliferative and pulmonary arteries expressed more collagen IV compared with control mice, even under hyperoxic conditions. Angiopoietin-2 (Ang2) mRNA expression in pulmonary artery smooth muscle cells (PASMC) was greater in SM22α-PHD1/2-/- compared with control mice in both normoxia and hyperoxia. Pulmonary endothelial cells (PECs) cocultured with PASMC isolated from SM22α-PHD1/2-/- mice formed more tubes and branches with greater tube length compared with PEC cocultured with PASMC isolated from SM22α-PHD1/2+/+ mice. Addition of Ang2 recombinant protein further augmented tube formation for both PHD1/2+/+ and PHD1/2-/- PASMC. Cell-specific deletion of PHD1 and 2 selectively increases HIF-1α expression in SM22α-expressing cells and protects neonatal lung development despite prolonged hyperoxia exposure. HIF stabilization in SM22α-expressing cells preserved endothelial cell proliferation, microvascular density, increased angiopoietin-2 expression, and lung structure, suggesting a role for cell-specific HIF-1α stabilization to prevent neonatal lung injury.


Assuntos
Hiperóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia , Lesão Pulmonar , Angiopoietina-2/metabolismo , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/patologia , Células Endoteliais/metabolismo , Humanos , Hiperóxia/metabolismo , Hiperóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Recém-Nascido , Recém-Nascido Prematuro , Pulmão/metabolismo , Lesão Pulmonar/etiologia , Lesão Pulmonar/metabolismo , Lesão Pulmonar/prevenção & controle , Camundongos
6.
Eur Respir J ; 59(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34446466

RESUMO

RATIONALE: Premature infants exposed to oxygen are at risk for bronchopulmonary dysplasia (BPD), which is characterised by lung growth arrest. Inflammation is important, but the mechanisms remain elusive. Here, we investigated inflammatory pathways and therapeutic targets in severe clinical and experimental BPD. METHODS AND RESULTS: First, transcriptomic analysis with in silico cellular deconvolution identified a lung-intrinsic M1-like-driven cytokine pattern in newborn mice after hyperoxia. These findings were confirmed by gene expression of macrophage-regulating chemokines (Ccl2, Ccl7, Cxcl5) and markers (Il6, Il17A, Mmp12). Secondly, hyperoxia-activated interleukin 6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signalling was measured in vivo and related to loss of alveolar epithelial type II cells (ATII) as well as increased mesenchymal marker. Il6 null mice exhibited preserved ATII survival, reduced myofibroblasts and improved elastic fibre assembly, thus enabling lung growth and protecting lung function. Pharmacological inhibition of global IL-6 signalling and IL-6 trans-signalling promoted alveolarisation and ATII survival after hyperoxia. Third, hyperoxia triggered M1-like polarisation, possibly via Krüppel-like factor 4; hyperoxia-conditioned medium of macrophages and IL-6-impaired ATII proliferation. Finally, clinical data demonstrated elevated macrophage-related plasma cytokines as potential biomarkers that identify infants receiving oxygen at increased risk of developing BPD. Moreover, macrophage-derived IL6 and active STAT3 were related to loss of epithelial cells in BPD lungs. CONCLUSION: We present a novel IL-6-mediated mechanism by which hyperoxia activates macrophages in immature lungs, impairs ATII homeostasis and disrupts elastic fibre formation, thereby inhibiting lung growth. The data provide evidence that IL-6 trans-signalling could offer an innovative pharmacological target to enable lung growth in severe neonatal chronic lung disease.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Animais , Animais Recém-Nascidos , Displasia Broncopulmonar/patologia , Modelos Animais de Doenças , Hiperóxia/patologia , Interleucina-6/metabolismo , Pulmão , Macrófagos/metabolismo , Camundongos
7.
Am J Respir Cell Mol Biol ; 64(3): 318-330, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33264084

RESUMO

Pulmonary angiogenesis is a key driver of alveolarization. Our prior studies showed that NF-κB promotes pulmonary angiogenesis during early alveolarization. However, the mechanisms regulating temporal-specific NF-κB activation in the pulmonary vasculature are unknown. To identify mechanisms that activate proangiogenic NF-κB signaling in the developing pulmonary vasculature, proteomic analysis of the lung secretome was performed using two-dimensional difference gel electrophoresis. NF-κB activation and angiogenic function was assessed in primary pulmonary endothelial cells (PECs) and TGFBI (transforming growth factor-ß-induced protein)-regulated genes identified using RNA sequencing. Alveolarization and pulmonary angiogenesis was assessed in wild-type and Tgfbi null mice exposed to normoxia or hyperoxia. Lung TGFBI expression was determined in premature lambs supported by invasive and noninvasive respiratory support. Secreted factors from the early alveolar, but not the late alveolar or adult lung, promoted proliferation and migration in quiescent, adult PECs. Proteomic analysis identified TGFBI as one protein highly expressed by the early alveolar lung that promoted PEC migration by activating NF-κB via αvß3 integrins. RNA sequencing identified Csf3 as a TGFBI-regulated gene that enhances nitric oxide production in PECs. Loss of TGFBI in mice exaggerated the impaired pulmonary angiogenesis induced by chronic hyperoxia, and TGFBI expression was disrupted in premature lambs with impaired alveolarization. Our studies identify TGFBI as a developmentally regulated protein that promotes NF-κB-mediated angiogenesis during early alveolarization by enhancing nitric oxide production. We speculate that dysregulation of TGFBI expression may contribute to diseases marked by impaired alveolar and vascular growth.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Pulmão/irrigação sanguínea , Pulmão/crescimento & desenvolvimento , NF-kappa B/metabolismo , Neovascularização Fisiológica , Fator de Crescimento Transformador beta/metabolismo , Animais , Animais Recém-Nascidos , Movimento Celular , Fatores Estimuladores de Colônias/metabolismo , Células Endoteliais/metabolismo , Integrina alfaVbeta3/metabolismo , Camundongos Endogâmicos C57BL , Óxido Nítrico/biossíntese , Nascimento Prematuro , Alvéolos Pulmonares/metabolismo , Ovinos
8.
J Cell Mol Med ; 23(9): 6182-6192, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31282094

RESUMO

A wealth of evidence supports the broad therapeutic potential of NF-κB and EZH2 inhibitors as adjuvants for breast cancer treatment. We contribute to this knowledge by elucidating, for the first time, unique regulatory crosstalk between EZH2, NF-κB and the NF-κB interacting long non-coding RNA (NKILA). We define a novel signaling loop encompassing canonical and non-canonical actions of EZH2 on the regulation of NF-κB/NKILA homeostasis, with relevance to breast cancer treatment. We applied a respective silencing approach in non-transformed breast epithelial cells, triple negative MDA-MB-231 cells and hormone responsive MCF-7 cells, and measured changes in EZH2/NF-κB/NKILA levels to confirm their interdependence. We demonstrate cell line-specific fluctuations in these factors that functionally contribute to epithelial-to-mesenchymal transition (EMT) remodelling and cell fate response. EZH2 inhibition attenuates MDA-MB-231 cell motility and CDK4-mediated MCF-7 cell cycle regulation, while inducing global H3K27 methylation and an EMT phenotype in non-transformed cells. Notably, these events are mediated by a cell-context dependent gain or loss of NKILA and NF-κB. Depletion of NF-κB in non-transformed cells enhances their sensitivity to growth factor signaling and suggests a role for the host microenvironment milieu in regulating EZH2/NF-κB/NKILA homeostasis. Taken together, this knowledge critically informs the delivery and assessment of EZH2 inhibitors in breast cancer.


Assuntos
Neoplasias da Mama/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , RNA Longo não Codificante/genética , Neoplasias da Mama/patologia , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Transição Epitelial-Mesenquimal/genética , Humanos , Células MCF-7 , NF-kappa B/genética , Transdução de Sinais/genética , Microambiente Tumoral
11.
J Cell Mol Med ; 22(9): 4410-4422, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29993183

RESUMO

Pulmonary angiogenesis is essential for alveolarization, the final stage of lung development that markedly increases gas exchange surface area. We recently demonstrated that activation of the nuclear factor kappa-B (NFκB) pathway promotes pulmonary angiogenesis during alveolarization. However, the mechanisms activating NFκB in the pulmonary endothelium, and its downstream targets are not known. In this study, we sought to delineate the specific roles for the NFκB activating kinases, IKKα and IKKß, in promoting developmental pulmonary angiogenesis. Microarray analysis of primary pulmonary endothelial cells (PECs) after silencing IKKα or IKKß demonstrated that the 2 kinases regulate unique panels of genes, with few shared targets. Although silencing IKKα induced mild impairments in angiogenic function, silencing IKKß induced more severe angiogenic defects and decreased vascular cell adhesion molecule expression, an IKKß regulated target essential for both PEC adhesion and migration. Taken together, these data show that IKKα and IKKß regulate unique genes in PEC, resulting in differential effects on angiogenesis upon inhibition, and identify IKKß as the predominant regulator of pulmonary angiogenesis during alveolarization. These data suggest that therapeutic strategies to specifically enhance IKKß activity in the pulmonary endothelium may hold promise to enhance lung growth in diseases marked by altered alveolarization.


Assuntos
Células Endoteliais/enzimologia , Regulação da Expressão Gênica no Desenvolvimento , Quinase I-kappa B/genética , Pulmão/enzimologia , Neovascularização Fisiológica/genética , Animais , Animais Recém-Nascidos , Apoptose/genética , Adesão Celular , Movimento Celular , Proliferação de Células , Células Endoteliais/citologia , Quinase I-kappa B/antagonistas & inibidores , Quinase I-kappa B/metabolismo , Pulmão/citologia , Pulmão/crescimento & desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/genética , NF-kappa B/metabolismo , Organogênese/genética , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/metabolismo
12.
Am J Physiol Lung Cell Mol Physiol ; 315(1): L66-L77, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29597831

RESUMO

Compromised pulmonary endothelial cell (PEC) barrier function characterizes acute respiratory distress syndrome (ARDS), a cause of substantial morbidity and mortality. Survival from ARDS is greater in children compared with adults. Whether developmental differences intrinsic to PEC barrier function contribute to this survival advantage remains unknown. To test the hypothesis that PEC barrier function is more well-preserved in neonatal lungs compared with adult lungs in response to inflammation, we induced lung injury in neonatal and adult mice with systemic lipopolysaccharide (LPS). We assessed PEC barrier function in vivo and in vitro, evaluated changes in the expression of focal adhesion kinase 1 (FAK1) and phosphorylation in response to LPS, and determined the effect of FAK silencing and overexpression on PEC barrier function. We found that LPS induced a greater increase in lung permeability and PEC barrier disruption in the adult mice, despite similar degrees of inflammation and apoptosis. Although baseline expression was similar, LPS increased FAK1 expression in neonatal PEC but increased FAK1 phosphorylation and decreased FAK1 expression in adult PEC. Pharmacologic inhibition of FAK1 accentuated LPS-induced barrier disruption most in adult PEC. Finally, in response to LPS, FAK silencing markedly impaired neonatal PEC barrier function, whereas FAK overexpression preserved adult PEC barrier function. Thus, developmental differences in FAK expression during inflammatory injury serve to preserve neonatal pulmonary endothelial barrier function compared with that of adults and suggest that intrinsic differences in the immature versus pulmonary endothelium, especially relative to FAK1 phosphorylation, may contribute to the improved outcomes of children with ARDS.


Assuntos
Apoptose , Barreira Alveolocapilar/enzimologia , Células Endoteliais/enzimologia , Endotélio/enzimologia , Quinase 1 de Adesão Focal/metabolismo , Transdução de Sinais , Animais , Barreira Alveolocapilar/crescimento & desenvolvimento , Barreira Alveolocapilar/patologia , Células Endoteliais/patologia , Endotélio/patologia , Quinase 1 de Adesão Focal/antagonistas & inibidores , Inflamação/induzido quimicamente , Inflamação/enzimologia , Inflamação/patologia , Lipopolissacarídeos/toxicidade , Camundongos
13.
Am J Physiol Lung Cell Mol Physiol ; 315(2): L265-L275, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29644895

RESUMO

Accessory subunits associated with the calcium-sensitive potassium channel (BKCa), a major determinant of vascular tone, confer functional and anatomical diversity. The ß1 subunit increases Ca2+ and voltagesensitivity of the BKCa channel and is expressed exclusively in smooth muscle cells. Evidence supporting the physiological significance of the ß1 subunit includes the observations that murine models with deletion of the ß1 subunit are hypertensive and that humans with a gain-of-function ß1 mutation are at a decreased risk of diastolic hypertension. However, whether the ß1 subunit of the BKCa channel contributes to the low tone that characterizes the normal pulmonary circulation or modulates the pulmonary vascular response to hypoxia remains unknown. To determine the role of the BKCa channel ß1 subunit in the regulation of pulmonary vascular tone and the response to acute and chronic hypoxia, mice with deletion of the Kcnmb1 gene that encodes for the ß1 subunit ( Kcnmb1-/-) were placed in chronic hypoxia (10% O2) for 21-24 days. In normoxia, right ventricular systolic pressure (RVSP) did not differ between Kcnmb1+/+ (controls) and Kcnmb1-/- mice. After exposure to either acute or chronic hypoxia, RVSP was higher in Kcnmb1-/- mice compared with Kcnmb1+/+ mice, without increased vascular remodeling. ß1 subunit expression was predominantly confined to pulmonary artery smooth muscle cells (PASMCs) from vessels ≤ 150 µm. Peripheral PASMCs contracted collagen gels irrespective of ß1 expression. Focal adhesion expression and Rho kinase activity were greater in Kcnmb1-/- compared with Kcnmb1+/+ PASMCs. Compromised PASMC ß1 function may contribute to the heightened microvascular vasoconstriction that characterizes pulmonary hypertension.


Assuntos
Hipóxia/metabolismo , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Pulmão/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Doença Aguda , Animais , Doença Crônica , Adesões Focais/genética , Adesões Focais/metabolismo , Adesões Focais/patologia , Deleção de Genes , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipertensão Pulmonar/patologia , Hipóxia/genética , Hipóxia/patologia , Subunidades beta do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Pulmão/irrigação sanguínea , Pulmão/patologia , Camundongos , Camundongos Knockout , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Artéria Pulmonar/patologia , Vasoconstrição
14.
Am J Physiol Lung Cell Mol Physiol ; 315(3): L348-L359, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29722560

RESUMO

Intrauterine growth restriction (IUGR) in premature newborns increases the risk for bronchopulmonary dysplasia, a chronic lung disease characterized by disrupted pulmonary angiogenesis and alveolarization. We previously showed that experimental IUGR impairs angiogenesis; however, mechanisms that impair pulmonary artery endothelial cell (PAEC) function are uncertain. The NF-κB pathway promotes vascular growth in the developing mouse lung, and we hypothesized that IUGR disrupts NF-κB-regulated proangiogenic targets in fetal PAEC. PAECs were isolated from the lungs of control fetal sheep and sheep with experimental IUGR from an established model of chronic placental insufficiency. Microarray analysis identified suppression of NF-κB signaling and significant alterations in extracellular matrix (ECM) pathways in IUGR PAEC, including decreases in collagen 4α1 and laminin α4, components of the basement membrane and putative NF-κB targets. In comparison with controls, immunostaining of active NF-κB complexes, NF-κB-DNA binding, baseline expression of NF-κB subunits p65 and p50, and LPS-mediated inducible activation of NF-κB signaling were decreased in IUGR PAEC. Although pharmacological NF-κB inhibition did not affect angiogenic function in IUGR PAEC, angiogenic function of control PAEC was reduced to a similar degree as that observed in IUGR PAEC. These data identify reductions in endothelial NF-κB signaling as central to the disrupted angiogenesis observed in IUGR, likely by impairing both intrinsic PAEC angiogenic function and NF-κB-mediated regulation of ECM components necessary for vascular development. These data further suggest that strategies that preserve endothelial NF-κB activation may be useful in lung diseases marked by disrupted angiogenesis such as IUGR.


Assuntos
Displasia Broncopulmonar , Células Endoteliais , Retardo do Crescimento Fetal , Subunidade p50 de NF-kappa B/metabolismo , Artéria Pulmonar , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Animais , Displasia Broncopulmonar/induzido quimicamente , Displasia Broncopulmonar/embriologia , Displasia Broncopulmonar/patologia , Displasia Broncopulmonar/fisiopatologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Retardo do Crescimento Fetal/induzido quimicamente , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/patologia , Retardo do Crescimento Fetal/fisiopatologia , Lipopolissacarídeos/toxicidade , Gravidez , Artéria Pulmonar/embriologia , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Ovinos
15.
Am J Physiol Lung Cell Mol Physiol ; 315(3): L422-L431, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29745253

RESUMO

Pulmonary artery smooth muscle cells (PASMCs) express endothelin (ET-1), which modulates the pulmonary vascular response to hypoxia. Although cross-talk between hypoxia-inducible factor-1α (HIF-1α), an O2-sensitive transcription factor, and ET-1 is established, the cell-specific relationship between HIF-1α and ET-1 expression remains incompletely understood. We tested the hypotheses that in PASMCs 1) HIF-1α expression constrains ET-1 expression, and 2) a specific microRNA (miRNA) links HIF-1α and ET-1 expression. In human (h)PASMCs, depletion of HIF-1α with siRNA increased ET-1 expression at both the mRNA and protein levels ( P < 0.01). In HIF-1α-/- murine PASMCs, ET-1 gene and protein expression was increased ( P < 0.0001) compared with HIF-1α+/+ cells. miRNA profiles were screened in hPASMCs transfected with siRNA-HIF-1α, and RNA hybridization was performed on the Agilent (Santa Clara, CA) human miRNA microarray. With HIF-1α depletion, miRNA-543 increased 2.4-fold ( P < 0.01). In hPASMCs, miRNA-543 overexpression increased ET-1 gene ( P < 0.01) and protein ( P < 0.01) expression, decreased TWIST gene expression ( P < 0.05), and increased ET-1 gene and protein expression, compared with nontargeting controls ( P < 0.01). Moreover, we evaluated low passage hPASMCs from control and patients with idiopathic pulmonary arterial hypertension (IPAH). Compared with controls, protein expression of HIF-1α and Twist-related protein-1 (TWIST1) was decreased ( P < 0.05), and miRNA-543 and ET-1 expression increased ( P < 0.001) in hPASMCs from patients with IPAH. Thus, in PASMCs, loss of HIF-1α increases miRNA-543, which decreases Twist expression, leading to an increase in PASMC ET-1 expression. This previously undescribed link between HIF-1α and ET-1 via miRNA-543 mediated Twist suppression represents another layer of molecular regulation that might determine pulmonary vascular tone.


Assuntos
Endotelina-1/biossíntese , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , MicroRNAs/biossíntese , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Animais , Células Cultivadas , Endotelina-1/genética , Regulação da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos , Camundongos Knockout , MicroRNAs/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína 1 Relacionada a Twist/genética , Proteína 1 Relacionada a Twist/metabolismo
17.
Am J Physiol Lung Cell Mol Physiol ; 310(10): L909-18, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27016588

RESUMO

Bronchopulmonary dysplasia (BPD), characterized by impaired alveolarization and vascularization in association with lung inflammation and apoptosis, often occurs after mechanical ventilation with oxygen-rich gas (MV-O2). As heightened expression of the proinflammatory cytokine TNF-α has been described in infants with BPD, we hypothesized that absence of TNF-α would reduce pulmonary inflammation, and attenuate structural changes in newborn mice undergoing MV-O2 Neonatal TNF-α null (TNF-α(-/-)) and wild type (TNF-α(+/+)) mice received MV-O2 for 8 h; controls spontaneously breathed 40% O2 Histologic, mRNA, and protein analysis in vivo were complemented by in vitro studies subjecting primary pulmonary myofibroblasts to mechanical stretch. Finally, TNF-α level in tracheal aspirates from preterm infants were determined by ELISA. Although MV-O2 induced larger and fewer alveoli in both, TNF-α(-/-) and TNF-α(+/+) mice, it caused enhanced lung apoptosis (TUNEL, caspase-3/-6/-8), infiltration of macrophages and neutrophils, and proinflammatory mediator expression (IL-1ß, CXCL-1, MCP-1) in TNF-α(-/-) mice. These differences were associated with increased pulmonary transforming growth factor-ß (TGF-ß) signaling, decreased TGF-ß inhibitor SMAD-7 expression, and reduced pulmonary NF-κB activity in ventilated TNF-α(-/-) mice. Preterm infants who went on to develop BPD showed significantly lower TNF-α levels at birth. Our results suggest a critical balance between TNF-α and TGF-ß signaling in the developing lung, and underscore the critical importance of these key pathways in the pathogenesis of BPD. Future treatment strategies need to weigh the potential benefits of inhibiting pathologic cytokine expression against the potential of altering key developmental pathways.


Assuntos
Displasia Broncopulmonar/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Displasia Broncopulmonar/genética , Displasia Broncopulmonar/metabolismo , Células Cultivadas , Humanos , Recém-Nascido , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia/genética , Pneumonia/imunologia , Pneumonia/metabolismo , Respiração Artificial , Traqueia/metabolismo , Fator de Necrose Tumoral alfa/genética
18.
Arterioscler Thromb Vasc Biol ; 35(1): 146-54, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25359856

RESUMO

OBJECTIVE: Rupture and dissection of aortic root aneurysms remain the leading causes of death in patients with the Marfan syndrome, a hereditary connective tissue disorder that affects 1 in 5000 individuals worldwide. In the present study, we use a Marfan mouse model (Fbn1(C1039G/+)) to investigate the biological importance of apoptosis during aneurysm development in Marfan syndrome. APPROACH AND RESULTS: Using in vivo single-photon emission computed tomographic-imaging and ex vivo autoradiography for Tc99m-annexin, we discovered increased apoptosis in the Fbn1(C1039G/+) ascending aorta during early aneurysm development peaking at 4 weeks. Immunofluorescence colocalization studies identified smooth muscle cells (SMCs) as the apoptotic cell population. As biological proof of concept that early aortic wall apoptosis plays a role in aneurysm development in Marfan syndrome, Fbn1(C1039G/+) mice were treated daily from 2 to 6 weeks with either (1) a pan-caspase inhibitor, Q-VD-OPh (20 mg/kg), or (2) vehicle control intraperitoneally. Q-VD-OPh treatment led to a significant reduction in aneurysm size and decreased extracellular matrix degradation in the aortic wall compared with control mice. In vitro studies using Fbn1(C1039G/+) ascending SMCs showed that apoptotic SMCs have increased elastolytic potential compared with viable cells, mostly because of caspase activity. Moreover, in vitro (1) cell membrane isolation, (2) immunofluorescence staining, and (3) scanning electron microscopy studies illustrate that caspases are expressed on the exterior cell surface of apoptotic SMCs. CONCLUSIONS: Caspase inhibition attenuates aneurysm development in an Fbn1(C1039G/+) Marfan mouse model. Mechanistically, during apoptosis, caspases are expressed on the cell surface of SMCs and likely contribute to elastin degradation and aneurysm development in Marfan syndrome.


Assuntos
Aneurisma Aórtico/etiologia , Apoptose , Caspases/metabolismo , Membrana Celular/enzimologia , Síndrome de Marfan/complicações , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Remodelação Vascular , Animais , Aorta/enzimologia , Aneurisma Aórtico/diagnóstico , Aneurisma Aórtico/enzimologia , Aneurisma Aórtico/genética , Aneurisma Aórtico/prevenção & controle , Apoptose/efeitos dos fármacos , Autorradiografia , Inibidores de Caspase/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Progressão da Doença , Elastina/metabolismo , Feminino , Fibrilina-1 , Fibrilinas , Imunofluorescência , Masculino , Síndrome de Marfan/genética , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Proteínas dos Microfilamentos/genética , Microscopia Eletrônica de Varredura , Músculo Liso Vascular/diagnóstico por imagem , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/ultraestrutura , Mutação , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/ultraestrutura , Fatores de Tempo , Tomografia Computadorizada de Emissão de Fóton Único , Remodelação Vascular/efeitos dos fármacos
20.
Am J Physiol Lung Cell Mol Physiol ; 308(4): L368-77, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25399435

RESUMO

Endothelin-1 (ET-1) increases pulmonary vascular tone through direct effects on pulmonary artery smooth muscle cells (PASMC) via membrane-bound ET-1 receptors. Circulating ET-1 contributes to vascular remodeling by promoting SMC proliferation and migration and inhibiting SMC apoptosis. Although endothelial cells (EC) are the primary source of ET-1, whether ET-1 produced by SMC modulates pulmonary vascular tone is unknown. Using transgenic mice created by crossbreeding SM22α-Cre mice with ET-1(flox/flox) mice to selectively delete ET-1 in SMC, we tested the hypothesis that PASMC ET-1 gene expression modulates the pulmonary vascular response to hypoxia. ET-1 gene deletion and selective activity of SM22α promoter-driven Cre recombinase were confirmed. Functional assays were performed under normoxic (21% O2) or hypoxic (5% O2) conditions using murine PASMC obtained from ET-1(+/+) and ET-1(-/-) mic and in human PASMC (hPASMC) after silencing of ET-1 using siRNA. Under baseline conditions, there was no difference in right ventricular systolic pressure (RVSP) between SM22α-ET-1(-/-) and SM22α-ET-1(+/+) (control) littermates. After exposure to hypoxia (10% O2, 21-24 days), RVSP was and vascular remodeling were less in SM22α-ET-1(-/-) mice compared with control littermates (P < 0.01). Loss of ET-1 decreased PASMC proliferation and migration and increased apoptosis under normoxic and hypoxic conditions. Exposure to selective ET-1 receptor antagonists had no effect on either the hypoxia-induced hPASMC proliferative or migratory response. SMC-specific ET-1 deletion attenuates hypoxia-induced increases in pulmonary vascular tone and structural remodeling. The observation that loss of ET-1 inhibited SMC proliferation, survival, and migration represents evidence that ET-1 derived from SMC plays a previously undescribed role in modulating the response of the pulmonary circulation to hypoxia. Thus PASMC ET-1 may modulate vascular tone independently of ET-1 produced by EC.


Assuntos
Endotelina-1/biossíntese , Regulação da Expressão Gênica , Hipóxia/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Animais , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Células Cultivadas , Doença Crônica , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Endotelina-1/genética , Inativação Gênica , Humanos , Hipóxia/genética , Hipóxia/patologia , Hipóxia/fisiopatologia , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/patologia , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Remodelação Vascular/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa