Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
EMBO J ; 41(11): e110409, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35451150

RESUMO

Astrocytes are highly abundant in the mammalian brain, and their functions are of vital importance for all aspects of development, adaption, and aging of the central nervous system (CNS). Mounting evidence indicates the important contributions of astrocytes to a wide range of neuropathies. Still, our understanding of astrocyte development significantly lags behind that of other CNS cells. We here combine immunohistochemical approaches with genetic fate-mapping, behavioural paradigms, single-cell transcriptomics, and in vivo two-photon imaging, to comprehensively assess the generation and the proliferation of astrocytes in the dentate gyrus (DG) across the life span of a mouse. Astrogenesis in the DG is initiated by radial glia-like neural stem cells giving rise to locally dividing astrocytes that enlarge the astrocyte compartment in an outside-in-pattern. Also in the adult DG, the vast majority of astrogenesis is mediated through the proliferation of local astrocytes. Interestingly, locally dividing astrocytes were able to adapt their proliferation to environmental and behavioral stimuli revealing an unexpected plasticity. Our study establishes astrocytes as enduring plastic elements in DG circuits, implicating a vital contribution of astrocyte dynamics to hippocampal plasticity.


Assuntos
Células-Tronco Neurais , Neurogênese , Animais , Astrócitos/fisiologia , Giro Denteado , Hipocampo/fisiologia , Mamíferos , Camundongos , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia
2.
Cereb Cortex ; 33(3): 663-675, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35257169

RESUMO

The TGF-ß family member activin A modulates neural underpinnings of cognitive and affective functions in an activity-dependent fashion. We have previously shown that exploration of a novel and enriched environment (EE) strongly enhanced activin signaling. Whereas the many beneficial effects of EE are amply documented, the underlying mechanisms remain largely elusive. Here, we examined the hypothesis that EE recruits activin to regulate synaptic plasticity in a coordinated, cognition-promoting manner. Elevated activin levels after EE enhanced CA1 pyramidal cell excitability, facilitated synaptic transmission, and promoted long-term potentiation. These EE-induced changes were largely absent in mice expressing a dominant-negative mutant of activin receptor IB. We then interrogated the impact of activin on network oscillations and functional connectivity, using high-speed Ca 2+ imaging to study spike routing within networks formed by dissociated primary hippocampal cultures. Activin facilitated Ca2+ signaling, enhanced the network strength, and shortened the weighted characteristic path length. In the slice preparation, activin promoted theta oscillations during cholinergic stimulation. Thus, we advance activin as an activity-dependent and very early molecular effector that translates behavioral stimuli experienced during EE exposure into a set of synchronized changes in neuronal excitability, synaptic plasticity, and network activity that are all tuned to improve cognitive functions.


Assuntos
Hipocampo , Potenciação de Longa Duração , Camundongos , Animais , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Ativinas
3.
Biophys J ; 122(7): 1287-1300, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36814379

RESUMO

Single-channel patch-clamp recordings allow observing the action of a single protein complex in real time and hence the deduction of the underlying conformational changes in the ion-channel protein. Commonly, recordings are modeled using hidden Markov chains, connecting open and closed states in the experimental data with protein conformations. The rates between states denote transition probabilities that could be modified by membrane voltage or ligand binding. Modeling algorithms have to deal with limited recording bandwidth and a very noisy background. It was previously shown that the fit of two-dimensional (2D)-dwell-time histograms with simulations is very robust in that regard. Errors introduced by the low-pass filter or noise cancel out to a certain degree when comparing experimental and simulated data. In addition, the topology of models (that is, the chain of open and closed states) could be inferred from 2D-histograms. However, the 2D-fit was never applied to its full potential. A major reason may be the extremely time-consuming and often unreliable fitting process, due to the stochastic variability in the simulations. We have now solved these issues by introducing a message-passing interface (MPI) allowing massive parallel computing on a high-performance computing (HPC) cluster and obtaining ensemble solutions. With ensembles, we have demonstrated how important ranked solutions are for difficult tasks related to a noisy background, fast gating events beyond the corner frequency of the low-pass filter, and topology estimation of the underlying Markov model. Finally, we have shown that, by combining the objective function of the 2D-fit with the deviation of the current amplitude distributions, automatic determination of the current level of the conducting state is possible, even with an apparent current reduction due to low-pass filtering. Making use of an HPC cluster, the power of 2D-dwell-time analysis can be used to its fullest with minor input of the experimenter.


Assuntos
Ativação do Canal Iônico , Canais Iônicos , Canais Iônicos/metabolismo , Cinética , Cadeias de Markov , Algoritmos , Modelos Biológicos
4.
Mol Psychiatry ; 27(12): 5070-5085, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36224261

RESUMO

St. John's wort is an herb, long used in folk medicine for the treatment of mild depression. Its antidepressant constituent, hyperforin, has properties such as chemical instability and induction of drug-drug interactions that preclude its use for individual pharmacotherapies. Here we identify the transient receptor potential canonical 6 channel (TRPC6) as a druggable target to control anxious and depressive behavior and as a requirement for hyperforin antidepressant action. We demonstrate that TRPC6 deficiency in mice not only results in anxious and depressive behavior, but also reduces excitability of hippocampal CA1 pyramidal neurons and dentate gyrus granule cells. Using electrophysiology and targeted mutagenesis, we show that hyperforin activates the channel via a specific binding motif at TRPC6. We performed an analysis of hyperforin action to develop a new antidepressant drug that uses the same TRPC6 target mechanism for its antidepressant action. We synthesized the hyperforin analog Hyp13, which shows similar binding to TRPC6 and recapitulates TRPC6-dependent anxiolytic and antidepressant effects in mice. Hyp13 does not activate pregnan-X-receptor (PXR) and thereby loses the potential to induce drug-drug interactions. This may provide a new approach to develop better treatments for depression, since depression remains one of the most treatment-resistant mental disorders, warranting the development of effective drugs based on naturally occurring compounds.


Assuntos
Antidepressivos , Hypericum , Floroglucinol , Canal de Cátion TRPC6 , Terpenos , Animais , Camundongos , Antidepressivos/isolamento & purificação , Antidepressivos/farmacologia , Hypericum/química , Canal de Cátion TRPC6/agonistas , Canal de Cátion TRPC6/química , Floroglucinol/isolamento & purificação , Floroglucinol/farmacologia , Terpenos/isolamento & purificação , Terpenos/farmacologia
5.
Proc Natl Acad Sci U S A ; 117(52): 33235-33245, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318193

RESUMO

The antimalarial artemisinins have also been implicated in the regulation of various cellular pathways including immunomodulation of cancers and regulation of pancreatic cell signaling in mammals. Despite their widespread application, the cellular specificities and molecular mechanisms of target recognition by artemisinins remain poorly characterized. We recently demonstrated how these drugs modulate inhibitory postsynaptic signaling by direct binding to the postsynaptic scaffolding protein gephyrin. Here, we report the crystal structure of the central metabolic enzyme pyridoxal kinase (PDXK), which catalyzes the production of the active form of vitamin B6 (also known as pyridoxal 5'-phosphate [PLP]), in complex with artesunate at 2.4-Šresolution. Partially overlapping binding of artemisinins with the substrate pyridoxal inhibits PLP biosynthesis as demonstrated by kinetic measurements. Electrophysiological recordings from hippocampal slices and activity measurements of glutamic acid decarboxylase (GAD), a PLP-dependent enzyme synthesizing the neurotransmitter γ-aminobutyric acid (GABA), define how artemisinins also interfere presynaptically with GABAergic signaling. Our data provide a comprehensive picture of artemisinin-induced effects on inhibitory signaling in the brain.


Assuntos
Artemisininas/farmacologia , Regulação para Baixo , Inibição Neural/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Piridoxal Quinase/antagonistas & inibidores , Transmissão Sináptica/efeitos dos fármacos , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Animais , Artemisininas/química , Sítios de Ligação , Regulação para Baixo/efeitos dos fármacos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Feminino , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Glutamato Descarboxilase/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Modelos Moleculares , Inibidores de Proteínas Quinases/química , Piridoxal Quinase/química , Piridoxal Quinase/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Ácido gama-Aminobutírico/biossíntese
6.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685952

RESUMO

The functional and neurophysiological distinction between the dorsal and ventral hippocampus affects also GABAergic inhibition. In line with this notion, ventral CA1 pyramidal cells displayed a more dynamic and effective response to inhibitory input compared to their dorsal counterparts. We posit that this difference is effected by the dorsal-ventral gradient of activin A, a member of the transforming growth factor-ß family, which is increasingly recognized for its modulatory role in brain regions involved in cognitive functions and affective behavior. Lending credence to this hypothesis, we found that in slices from transgenic mice expressing a dominant-negative mutant of activin receptor IB (dnActRIB), inhibitory transmission was enhanced only in CA1 neurons of the dorsal hippocampus, where the basal activin A level is much higher than in the ventral hippocampus. We next asked how a rise in endogenous activin A would affect GABAergic inhibition along the longitudinal axis of the hippocampus. We performed ex vivo recordings in wild-type and dnActRIB mice after overnight exposure to an enriched environment (EE), which engenders a robust increase in activin A levels in both dorsal and ventral hippocampi. Compared to control mice from standard cages, the behaviorally induced surge in activin A produced a decline in ventral inhibition, an effect that was absent in slices from dnActRIB mice. Underscoring the essential role of activin in the EE-associated modulation of ventral inhibition, this effect was mimicked by acute application of recombinant activin A in control slices. In summary, both genetic and behavioral manipulations of activin receptor signaling affected the dorsal-ventral difference in synaptic inhibition, suggesting that activin A regulates the strength of GABAergic inhibition in a region-specific fashion.


Assuntos
Ativinas , Cognição , Animais , Camundongos , Receptores de Ativinas , Hipocampo , Camundongos Transgênicos
7.
Hippocampus ; 32(5): 401-410, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35301773

RESUMO

Mossy cells (MCs) in the hilus of the dentate gyrus (DG) receive increasing attention as a major player controlling information processing in the DG network. Furthermore, disturbed MC activity has been implicated in widespread neuropsychiatric disorders such as epilepsy and major depression. Using whole-cell patch-clamp recordings from MCs in acute hippocampal slices from wild type and transgenic mice, we demonstrate that activin, a member of the transforming growth factor-ß (TGF-ß) family, has a strong neuromodulatory effect on MC activity. Disruption of activin receptor signaling reduced MC firing, dampened their excitatory input and augmented their inhibitory input. By contrast, acute application of recombinant activin A strongly increased MC activity and promoted excitatory synaptic drive. Notably, similar changes of MC activity have been observed in a rodent model of depression and after antidepressant drug therapy, respectively. Given that a rise in activin signaling particularly in the DG has been proposed as a mechanism of antidepressant action, our data suggest that the effect of activin on MC excitability might make a considerable contribution in this regard.


Assuntos
Hipocampo , Fibras Musgosas Hipocampais , Ativinas/farmacologia , Animais , Giro Denteado/fisiologia , Hipocampo/fisiologia , Camundongos , Camundongos Transgênicos , Fibras Musgosas Hipocampais/fisiologia
8.
Mol Psychiatry ; 25(9): 2101-2118, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-30038229

RESUMO

Antipsychotic drugs are effective interventions in schizophrenia. However, the efficacy of these agents often decreases over time, which leads to treatment failure and symptom recurrence. We report that antipsychotic efficacy in rat models declines in concert with extracellular striatal dopamine levels rather than insufficient dopamine D2 receptor occupancy. Antipsychotic efficacy was associated with a suppression of dopamine transporter activity, which was reversed during failure. Antipsychotic failure coincided with reduced dopamine neuron firing, which was not observed during antipsychotic efficacy. Synaptic field responses in dopamine target areas declined during antipsychotic efficacy and showed potentiation during failure. Antipsychotics blocked synaptic vesicle release during efficacy but enhanced this release during failure. We found that the pharmacological inhibition of the dopamine transporter rescued antipsychotic drug treatment outcomes, supporting the hypothesis that the dopamine transporter is a main target of antipsychotic drugs and predicting that dopamine transporter blockers may be an adjunct treatment to reverse antipsychotic treatment failure.


Assuntos
Antipsicóticos , Esquizofrenia , Animais , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Dopamina/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de Dopamina , Ratos , Receptores de Dopamina D2/metabolismo , Esquizofrenia/tratamento farmacológico
9.
Cereb Cortex ; 30(6): 3731-3743, 2020 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-32080705

RESUMO

Neuronal activity initiates transcriptional programs that shape long-term changes in plasticity. Although neuron subtypes differ in their plasticity response, most activity-dependent transcription factors (TFs) are broadly expressed across neuron subtypes and brain regions. Thus, how region- and neuronal subtype-specific plasticity are established on the transcriptional level remains poorly understood. We report that in young adult (i.e., 6-8 weeks old) mice, the developmental TF SOX11 is induced in neurons within 6 h either by electroconvulsive stimulation or by exploration of a novel environment. Strikingly, SOX11 induction was restricted to the dentate gyrus (DG) of the hippocampus. In the novel environment paradigm, SOX11 was observed in a subset of c-FOS expressing neurons (ca. 15%); whereas around 75% of SOX11+ DG granule neurons were c-FOS+, indicating that SOX11 was induced in an activity-dependent fashion in a subset of neurons. Environmental enrichment or virus-mediated overexpression of SOX11 enhanced the excitability of DG granule cells and downregulated the expression of different potassium channel subunits, whereas conditional Sox11/4 knock-out mice presented the opposite phenotype. We propose that Sox11 is regulated in an activity-dependent fashion, which is specific to the DG, and speculate that activity-dependent Sox11 expression may participate in the modulation of DG neuron plasticity.


Assuntos
Giro Denteado/metabolismo , Comportamento Exploratório/fisiologia , Regulação da Expressão Gênica , Plasticidade Neuronal/genética , Neurônios/metabolismo , Fatores de Transcrição SOXC/genética , Animais , Eletrochoque , Camundongos , Camundongos Knockout , Técnicas de Patch-Clamp , Proteínas Proto-Oncogênicas c-fos/metabolismo , Fatores de Transcrição SOXC/metabolismo
10.
Int J Mol Sci ; 22(7)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917574

RESUMO

The neuromodulator calcitonin gene-related peptide (CGRP) is known to facilitate nociceptive transmission in the superficial laminae of the spinal trigeminal nucleus caudalis (Sp5C). The central effects of CGRP in the Sp5C are very likely to contribute to the activation of central nociceptive pathways leading to attacks of severe headaches like migraine. To examine the potential impacts of CGRP on laminae I/II neurons at cellular and synaptic levels, we performed whole-cell patch-clamp recordings in juvenile mouse brainstem slices. First, we tested the effect of CGRP on cell excitability, focusing on neurons with tonically firing action potentials upon depolarizing current injection. CGRP (100 nM) enhanced tonic discharges together with membrane depolarization, an excitatory effect that was significantly reduced when the fast synaptic transmissions were pharmacologically blocked. However, CGRP at 500 nM was capable of exciting the functionally isolated cells, in a nifedipine-sensitive manner, indicating its direct effect on membrane intrinsic properties. In voltage-clamped cells, 100 nM CGRP effectively increased the frequency of excitatory synaptic inputs, suggesting its preferential presynaptic effect. Both CGRP-induced changes in cell excitability and synaptic drives were prevented by the CGRP receptor inhibitor BIBN 4096BS. Our data provide evidence that CGRP increases neuronal activity in Sp5C superficial laminae by dose-dependently promoting excitatory synaptic drive and directly enhancing cell intrinsic properties. We propose that the combination of such pre- and postsynaptic actions of CGRP might underlie its facilitation in nociceptive transmission in situations like migraine with elevated CGRP levels.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Tronco Encefálico/metabolismo , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Neurônios/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Núcleo Espinal do Trigêmeo/metabolismo , Animais , Antagonistas do Receptor do Peptídeo Relacionado ao Gene de Calcitonina/farmacologia , Feminino , Masculino , Camundongos , Piperazinas/farmacologia , Quinazolinas/farmacologia
11.
J Neurosci ; 39(45): 9013-9027, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31527119

RESUMO

Cleavage of amyloid precursor protein (APP) by ß-secretase BACE1 initiates the production and accumulation of neurotoxic amyloid-ß peptides, which is widely considered an essential pathogenic mechanism in Alzheimer's disease (AD). Here, we report that BACE1 is essential for normal auditory function. Compared with wild-type littermates, BACE1-/- mice of either sex exhibit significant hearing deficits, as indicated by increased thresholds and reduced amplitudes in auditory brainstem responses (ABRs) and decreased distortion product otoacoustic emissions (DPOAEs). Immunohistochemistry revealed aberrant synaptic organization in the cochlea and hypomyelination of auditory nerve fibers as predominant neuropathological substrates of hearing loss in BACE1-/- mice. In particular, we found that fibers of spiral ganglion neurons (SGN) close to the organ of Corti are disorganized and abnormally swollen. BACE1 deficiency also engenders organization defects in the postsynaptic compartment of SGN fibers with ectopic overexpression of PSD95 far outside the synaptic region. During postnatal development, auditory fiber myelination in BACE1-/- mice lags behind dramatically and remains incomplete into adulthood. We relate the marked hypomyelination to the impaired processing of Neuregulin-1 when BACE1 is absent. To determine whether the cochlea of adult wild-type mice is susceptible to AD treatment-like suppression of BACE1, we administered the established BACE1 inhibitor NB-360 for 6 weeks. The drug suppressed BACE1 activity in the brain, but did not impair hearing performance and, upon neuropathological examination, did not produce the characteristic cochlear abnormalities of BACE1-/- mice. Together, these data strongly suggest that the hearing loss of BACE1 knock-out mice represents a developmental phenotype.SIGNIFICANCE STATEMENT Given its crucial role in the pathogenesis of Alzheimer's disease (AD), BACE1 is a prime pharmacological target for AD prevention and therapy. However, the safe and long-term administration of BACE1-inhibitors as envisioned in AD requires a comprehensive understanding of the various physiological functions of BACE1. Here, we report that BACE1 is essential for the processing of auditory signals in the inner ear, as BACE1-deficient mice exhibit significant hearing loss. We relate this deficit to impaired myelination and aberrant synapse formation in the cochlea, which manifest during postnatal development. By contrast, prolonged pharmacological suppression of BACE1 activity in adult wild-type mice did not reproduce the hearing deficit or the cochlear abnormalities of BACE1 null mice.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Cóclea/metabolismo , Potenciais Evocados Auditivos do Tronco Encefálico , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Cóclea/fisiologia , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Neuregulina-1/genética , Neuregulina-1/metabolismo , Gânglio Espiral da Cóclea/metabolismo , Gânglio Espiral da Cóclea/fisiologia
12.
J Neurochem ; 154(4): 424-440, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31943210

RESUMO

Psychostimulants are widely abused drugs that may cause addiction in vulnerable individuals. While the reward circuitry of the brain is involved in addiction establishment, various pathways in the brain may provide protection at the molecular level that limits the acute and chronic effects of drugs. These targets may be used for strategies designed to prevent and treat addiction. Swiprosin-1/EF hand domain 2 (EFhd2) is a Ca2+ -binding cytoskeletal adaptor protein involved in sensation-seeking behaviour, anxiety and alcohol addiction. Here, we tested how EFhd2 contributes to the physiological and behavioural effects of the psychostimulant drugs methamphetamine (METH) and cocaine. An in vivo microdialysis study in EFhd2 knockout mice revealed that EFhd2 controls METH- and cocaine-induced changes in extracellular dopamine, serotonin and noradrenaline levels through different mechanisms in the nucleus accumbens and prefrontal cortex. Electrophysiological recordings in a slice preparation showed that a lack of EFhd2 increases dopaminergic neuronal activity in the ventral tegmental area and increases the sensitivity of neurons to stimulation. We report a role of EFhd2 in METH-induced locomotor activation and in the conditioned locomotor effects. No role, however, was observed in the establishment of METH- or cocaine-induced conditioned place preference. These findings may suggest that EFhd2 modulates the activity of the dopaminergic system and the neurochemical effects of METH and cocaine, which translate into a modulation of the behavioural effects of these drugs at the level of the acute and conditioned locomotor activity.


Assuntos
Encéfalo/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Cocaína/farmacologia , Locomoção/efeitos dos fármacos , Metanfetamina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
13.
J Neurosci ; 38(14): 3480-3494, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29507146

RESUMO

The ß-secretase ß-site APP-cleaving enzyme 1 (BACE1) is deemed a major culprit in Alzheimer's disease, but accumulating evidence indicates that there is more to the enzyme than driving the amyloidogenic processing of the amyloid precursor protein. For example, BACE1 has emerged as an important regulator of neuronal activity through proteolytic and, most unexpectedly, also through nonproteolytic interactions with several ion channels. Here, we identify and characterize the voltage-gated K+ channel 3.4 (Kv3.4) as a new and functionally relevant interaction partner of BACE1. Kv3.4 gives rise to A-type current with fast activating and inactivating kinetics and serves to repolarize the presynaptic action potential. We found that BACE1 and Kv3.4 are highly enriched and remarkably colocalized in hippocampal mossy fibers (MFs). In BACE1-/- mice of either sex, Kv3.4 surface expression was significantly reduced in the hippocampus and, in synaptic fractions thereof, Kv3.4 was specifically diminished, whereas protein levels of other presynaptic K+ channels such as KCa1.1 and KCa2.3 remained unchanged. The apparent loss of presynaptic Kv3.4 affected the strength of excitatory transmission at the MF-CA3 synapse in hippocampal slices of BACE1-/- mice when probed with the Kv3 channel blocker BDS-I. The effect of BACE1 on Kv3.4 expression and function should be bidirectional, as predicted from a heterologous expression system, in which BACE1 cotransfection produced a concomitant upregulation of Kv3.4 surface level and current based on a physical interaction between the two proteins. Our data show that, by targeting Kv3.4 to presynaptic sites, BACE1 endows the terminal with a powerful means to regulate the strength of transmitter release.SIGNIFICANCE STATEMENT The ß-secretase ß-site APP-cleaving enzyme 1 (BACE1) is infamous for its crucial role in the pathogenesis of Alzheimer's disease, but its physiological functions in the intact nervous system are only gradually being unveiled. Here, we extend previous work implicating BACE1 in the expression and function of voltage-gated Na+ and K+ channels. Specifically, we characterize voltage-gated K+ channel 3.4 (Kv3.4), a presynaptic K+ channel required for action potential repolarization, as a novel interaction partner of BACE1 at the mossy fiber (MF)-CA3 synapse of the hippocampus. BACE1 promotes surface expression of Kv3.4 at MF terminals, most likely by physically associating with the channel protein in a nonenzymatic fashion. We advance the BACE1-Kv3.4 interaction as a mechanism to strengthen the temporal control over transmitter release from MF terminals.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Fibras Musgosas Hipocampais/metabolismo , Canais de Potássio Shaw/metabolismo , Animais , Células Cultivadas , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transporte Proteico
14.
J Neurosci ; 37(33): 7948-7961, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28724750

RESUMO

Functional impairments or trafficking defects of inhibitory glycine receptors (GlyRs) have been linked to human hyperekplexia/startle disease and autism spectrum disorders. We found that a lack of synaptic integration of GlyRs, together with disrupted receptor function, is responsible for a lethal startle phenotype in a novel spontaneous mouse mutant shaky, caused by a missense mutation, Q177K, located in the extracellular ß8-ß9 loop of the GlyR α1 subunit. Recently, structural data provided evidence that the flexibility of the ß8-ß9 loop is crucial for conformational transitions during opening and closing of the ion channel and represents a novel allosteric binding site in Cys-loop receptors. We identified the underlying neuropathological mechanisms in male and female shaky mice through a combination of protein biochemistry, immunocytochemistry, and both in vivo and in vitro electrophysiology. Increased expression of the mutant GlyR α1Q177K subunit in vivo was not sufficient to compensate for a decrease in synaptic integration of α1Q177Kß GlyRs. The remaining synaptic heteromeric α1Q177Kß GlyRs had decreased current amplitudes with significantly faster decay times. This functional disruption reveals an important role for the GlyR α1 subunit ß8-ß9 loop in initiating rearrangements within the extracellular-transmembrane GlyR interface and that this structural element is vital for inhibitory GlyR function, signaling, and synaptic clustering.SIGNIFICANCE STATEMENT GlyR dysfunction underlies neuromotor deficits in startle disease and autism spectrum disorders. We describe an extracellular GlyR α1 subunit mutation (Q177K) in a novel mouse startle disease mutant shaky Structural data suggest that during signal transduction, large transitions of the ß8-ß9 loop occur in response to neurotransmitter binding. Disruption of the ß8-ß9 loop by the Q177K mutation results in a disruption of hydrogen bonds between Q177 and the ligand-binding residue R65. Functionally, the Q177K change resulted in decreased current amplitudes, altered desensitization decay time constants, and reduced GlyR clustering and synaptic strength. The GlyR ß8-ß9 loop is therefore an essential regulator of conformational rearrangements during ion channel opening and closing.


Assuntos
Receptores de Glicina/genética , Receptores de Glicina/metabolismo , Rigidez Muscular Espasmódica/genética , Rigidez Muscular Espasmódica/metabolismo , Sinapses/genética , Sinapses/metabolismo , Animais , Líquido Extracelular/metabolismo , Feminino , Células HEK293 , Humanos , Ativação do Canal Iônico/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios Motores/metabolismo , Mutação de Sentido Incorreto/fisiologia , Estrutura Secundária de Proteína , Receptores de Glicina/química , Índice de Gravidade de Doença , Medula Espinal/metabolismo , Transmissão Sináptica/fisiologia
15.
J Neurosci ; 35(8): 3298-311, 2015 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-25716831

RESUMO

The ß-secretase BACE1 is widely known for its pivotal role in the amyloidogenic pathway leading to Alzheimer's disease, but how its action on transmembrane proteins other than the amyloid precursor protein affects the nervous system is only beginning to be understood. We report here that BACE1 regulates neuronal excitability through an unorthodox, nonenzymatic interaction with members of the KCNQ (Kv7) family that give rise to the M-current, a noninactivating potassium current with slow kinetics. In hippocampal neurons from BACE1(-/-) mice, loss of M-current enhanced neuronal excitability. We relate the diminished M-current to the previously reported epileptic phenotype of BACE1-deficient mice. In HEK293T cells, BACE1 amplified reconstituted M-currents, altered their voltage dependence, accelerated activation, and slowed deactivation. Biochemical evidence strongly suggested that BACE1 physically associates with channel proteins in a ß-subunit-like fashion. Our results establish BACE1 as a physiologically essential constituent of regular M-current function and elucidate a striking new feature of how BACE1 impacts on neuronal activity in the intact and diseased brain.


Assuntos
Potenciais de Ação , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Hipocampo/metabolismo , Canais de Potássio KCNQ/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Células Cultivadas , Feminino , Células HEK293 , Hipocampo/citologia , Hipocampo/fisiologia , Humanos , Canais de Potássio KCNQ/genética , Masculino , Camundongos , Ligação Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Células Piramidais/metabolismo , Células Piramidais/fisiologia
17.
J Neurosci ; 34(30): 9845-56, 2014 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-25057188

RESUMO

Glycoprotein 130 (gp130) is the signal transducing receptor subunit for cytokines of the interleukin-6 (IL-6) family, and it is expressed in a multitude of cell types of the immune and nervous system. IL-6-like cytokines are not only key regulators of innate immunity and inflammation but are also essential factors for the differentiation and development of the somatosensory system. Mice with a null mutation of gp130 in primary nociceptive afferents (SNS-gp130(-/-)) are largely protected from hypersensitivity to mechanical stimuli in mouse models of pathological pain. Therefore, we set out to investigate how neuronal gp130 regulates mechanonociception. SNS-gp130(-/-) mice revealed reduced mechanosensitivity to high mechanical forces in the von Frey assay in vivo, and this was associated with a reduced sensitivity of nociceptive primary afferents in vitro. Together with these findings, transient receptor potential ankyrin 1 (TRPA1) mRNA expression was significantly reduced in DRG from SNS-gp130(-/-) mice. This was also reflected by a reduced number of neurons responding with calcium transients to TRPA1 agonists in primary DRG cultures. Downregulation of Trpa1 expression was predominantly discovered in nonpeptidergic neurons, with the deficit becoming evident during stages of early postnatal development. Regulation of Trpa1 mRNA expression levels downstream of gp130 involved the classical Janus kinase family-signal transducer and activator of transcription pathway. Our results closely link proinflammatory cytokines to the expression of TRPA1, both of which have been shown to contribute to hypersensitive pain states. We suggest that gp130 has an essential role in mechanonociception and in the regulation of TRPA1 expression.


Assuntos
Receptor gp130 de Citocina/deficiência , Regulação para Baixo/genética , Deleção de Genes , Mecanorreceptores/metabolismo , Células Receptoras Sensoriais/metabolismo , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Canais de Potencial de Receptor Transitório/genética , Animais , Células Cultivadas , Receptor gp130 de Citocina/antagonistas & inibidores , Receptor gp130 de Citocina/genética , Feminino , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/biossíntese , Transdução de Sinais/genética , Canal de Cátion TRPA1 , Canais de Potencial de Receptor Transitório/biossíntese
18.
J Mol Cell Cardiol ; 89(Pt B): 335-48, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26454161

RESUMO

KCNQ1 (Kv7.1) proteins form a homotetrameric channel, which produces a voltage-dependent K(+) current. Co-assembly of KCNQ1 with the auxiliary ß-subunit KCNE1 strongly up-regulates this current. In cardiac myocytes, KCNQ1/E1 complexes are thought to give rise to the delayed rectifier current IKs, which contributes to cardiac action potential repolarization. We report here that the type I membrane protein BACE1 (ß-site APP-cleaving enzyme 1), which is best known for its detrimental role in Alzheimer's disease, but is also, as reported here, present in cardiac myocytes, serves as a novel interaction partner of KCNQ1. Using HEK293T cells as heterologous expression system to study the electrophysiological effects of BACE1 and KCNE1 on KCNQ1 in different combinations, our main findings were the following: (1) BACE1 slowed the inactivation of KCNQ1 current producing an increased initial response to depolarizing voltage steps. (2) Activation kinetics of KCNQ1/E1 currents were significantly slowed in the presence of co-expressed BACE1. (3) BACE1 impaired reconstituted cardiac IKs when cardiac action potentials were used as voltage commands, but interestingly augmented the IKs of ATP-deprived cells, suggesting that the effect of BACE1 depends on the metabolic state of the cell. (4) The electrophysiological effects of BACE1 on KCNQ1 reported here were independent of its enzymatic activity, as they were preserved when the proteolytically inactive variant BACE1 D289N was co-transfected in lieu of BACE1 or when BACE1-expressing cells were treated with the BACE1-inhibiting compound C3. (5) Co-immunoprecipitation and fluorescence recovery after photobleaching (FRAP) supported our hypothesis that BACE1 modifies the biophysical properties of IKs by physically interacting with KCNQ1 in a ß-subunit-like fashion. Strongly underscoring the functional significance of this interaction, we detected BACE1 in human iPSC-derived cardiomyocytes and murine cardiac tissue and observed decreased IKs in atrial cardiomyocytes of BACE1-deficient mice.


Assuntos
Secretases da Proteína Precursora do Amiloide/deficiência , Ácido Aspártico Endopeptidases/deficiência , Ativação do Canal Iônico , Canal de Potássio KCNQ1/metabolismo , Miócitos Cardíacos/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Potenciais de Ação , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Feminino , Células HEK293 , Humanos , Imunoprecipitação , Cinética , Masculino , Camundongos , Complexos Multiproteicos/metabolismo , Fenótipo , Ligação Proteica , Proteólise
19.
Neuropediatrics ; 46(2): 82-7, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25769120

RESUMO

Activin A is a multifunctional growth and differentiation factor belonging to the transforming growth factor ß (TGF-ß) family. Growing evidence indicates its role as a neurotrophic factor and regulator of synaptic transmission as well as its functional importance in several types of cerebral injury. We recently described age-dependent expression of activin A and its regulation at the mRNA and protein level under different conditions of global hypoxia in the neonatal mouse brain. This review discusses the current knowledge of the function and regulation of activin A from human studies as well as from experimental models of brain injury focusing on acquired lesions of the developing rodent brain during the early stages of brain maturation.


Assuntos
Ativinas/metabolismo , Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Animais , Biomarcadores/metabolismo , Feminino , Humanos , Inflamação/metabolismo , Gravidez , Acidente Vascular Cerebral/metabolismo
20.
Proc Natl Acad Sci U S A ; 109(17): 6704-9, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22493249

RESUMO

Infusion of the chemotherapeutic agent oxaliplatin leads to an acute and a chronic form of peripheral neuropathy. Acute oxaliplatin neuropathy is characterized by sensory paresthesias and muscle cramps that are notably exacerbated by cooling. Painful dysesthesias are rarely reported for acute oxaliplatin neuropathy, whereas a common symptom of chronic oxaliplatin neuropathy is pain. Here we examine the role of the sodium channel isoform Na(V)1.6 in mediating the symptoms of acute oxaliplatin neuropathy. Compound and single-action potential recordings from human and mouse peripheral axons showed that cooling in the presence of oxaliplatin (30-100 µM; 90 min) induced bursts of action potentials in myelinated A, but not unmyelinated C-fibers. Whole-cell patch-clamp recordings from dissociated dorsal root ganglion (DRG) neurons revealed enhanced tetrodotoxin-sensitive resurgent and persistent current amplitudes in large, but not small, diameter DRG neurons when cooled (22 °C) in the presence of oxaliplatin. In DRG neurons and peripheral myelinated axons from Scn8a(med/med) mice, which lack functional Na(V)1.6, no effect of oxaliplatin and cooling was observed. Oxaliplatin significantly slows the rate of fast inactivation at negative potentials in heterologously expressed mNa(V)1.6r in ND7 cells, an effect consistent with prolonged Na(V) open times and increased resurgent and persistent current in native DRG neurons. This finding suggests that Na(V)1.6 plays a central role in mediating acute cooling-exacerbated symptoms following oxaliplatin, and that enhanced resurgent and persistent sodium currents may provide a general mechanistic basis for cold-aggravated symptoms of neuropathy.


Assuntos
Antineoplásicos/farmacologia , Proteínas do Tecido Nervoso/efeitos dos fármacos , Compostos Organoplatínicos/farmacologia , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Canais de Sódio/efeitos dos fármacos , Animais , Axônios , Gânglios Espinais/citologia , Gânglios Espinais/fisiologia , Humanos , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.6 , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Oxaliplatina , Canais de Sódio/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa