Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 207(12): 2952-2965, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34810226

RESUMO

Hundreds of genes have been linked to multiple sclerosis (MS); yet, the underlying mechanisms behind these associations have only been investigated in a fraction of cases. Endoplasmic reticulum aminopeptidase 1 (ERAP1) is an endoplasmic reticulum-localized aminopeptidase with important roles in trimming peptides destined for MHC class I and regulation of innate immune responses. As such, genetic polymorphisms in ERAP1 have been linked to multiple autoimmune diseases. In this study, we present, to our knowledge, the first mechanistic studies performed to uncover why polymorphisms in ERAP1 are associated with increased susceptibility to MS. Combining multiple mouse models of CNS autoimmunity with high-dimensional single-cell spectral cytometry, adoptive transfer studies, and integrative analysis of human single-cell RNA-sequencing datasets, we identify an intrinsic defect in B cells as being primarily responsible. Not only are mice lacking ERAP1 more susceptible to CNS autoimmunity, but adoptive transfer of B cells lacking ERAP1 into B cell-deficient mice recapitulates this susceptibility. We found B cells lacking ERAP1 display decreased proliferation in vivo and express higher levels of activation/costimulatory markers. Integrative analysis of single-cell RNA sequencing of B cells from 36 individuals revealed subset-conserved differences in gene expression and pathway activation in individuals harboring the MS-linked K528R ERAP1 single-nucleotide polymorphism. Finally, our studies also led us to create, to our knowledge, the first murine protein-level map of the CNS IL-10+ immune compartment at steady state and during neuroinflammation. These studies identify a role for ERAP1 in the modulation of B cells and highlight this as one reason why polymorphisms in this gene are linked to MS.


Assuntos
Doenças Autoimunes , Linfócitos B , Esclerose Múltipla , Aminopeptidases/genética , Aminopeptidases/metabolismo , Animais , Autoimunidade/genética , Sistema Nervoso Central , Camundongos , Antígenos de Histocompatibilidade Menor/genética , Esclerose Múltipla/genética , Polimorfismo de Nucleotídeo Único
2.
J Immunol ; 206(1): 193-205, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33288545

RESUMO

T cell exhaustion represents one of the most pervasive strategies tumors employ to circumvent the immune system. Although repetitive, cognate TCR signaling is recognized as the primary driving force behind this phenomenon, and it remains unknown what other forces drive T cell exhaustion in the tumor microenvironment (TME). In this study, we show that activation of the self-ligand SLAMF7 immune receptor on T cells induced STAT1 and STAT3 phosphorylation, expression of multiple inhibitory receptors, and transcription factors associated with T cell exhaustion. Analysis of The Cancer Genome Atlas revealed that SLAMF7 transcript levels were strongly correlated with various inhibitory receptors and that high SLAMF7 expression was indicative of poor survival in clear cell renal cell carcinoma (ccRCC). Targeted reanalysis of a CyTOF dataset, which profiled the TME in 73 ccRCC patients, revealed cell-type-specific SLAMF7 expression patterns, strong correlations between exhausted T cells and SLAMF7+ tumor-associated macrophages (TAMs), and a unique subset of SLAMF7highCD38high TAMs. These SLAMF7highCD38high TAMs showed the strongest correlations with exhausted T cells and were an independent prognostic factor in ccRCC. Confirmatory ex vivo coculture studies validated that SLAMF7-SLAMF7 interactions between murine TAMs and CD8+ T cells induce expression of multiple inhibitory receptors. Finally, mice lacking SLAMF7 show restricted growth of B16-F10 tumors, and CD8+ T cells from these mice express less PD-1 and TOX and exhibited an impaired ability to progress through the exhaustion developmental trajectory to terminal exhaustion. These findings suggest that SLAMF7 might play an important role in modulating T cell function in the TME.


Assuntos
Carcinoma de Células Renais/metabolismo , Neoplasias Renais/metabolismo , Melanoma/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Neoplasias Cutâneas/metabolismo , Linfócitos T/imunologia , Animais , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/mortalidade , Células Cultivadas , Reprogramação Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Tolerância Imunológica , Neoplasias Renais/imunologia , Neoplasias Renais/mortalidade , Masculino , Melanoma/imunologia , Melanoma Experimental , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Experimentais , Transdução de Sinais , Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Neoplasias Cutâneas/imunologia , Análise de Sobrevida , Microambiente Tumoral
3.
BMC Immunol ; 23(1): 9, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-35246034

RESUMO

BACKGROUND: In addition to its role in antigen presentation, recent reports establish a new role for endoplasmic reticulum aminopeptidase 1 (ERAP1) in innate immunity; however, the mechanisms underlying these functions are not fully defined. We previously confirmed that loss of ERAP1 functions resulted in exaggerated innate immune responses in a murine in vivo model. Here, we investigated the role of ERAP1 in suppressing inflammasome pathways and their dependence on ER stress responses. RESULTS: Using bone marrow-derived macrophages (BMDMs), we found that loss of ERAP1 in macrophages resulted in exaggerated production of IL-1ß and IL-18 and augmented caspase-1 activity, relative to wild type macrophages. Moreover, an in vivo colitis model utilizing dextran sodium sulfate (DSS) confirmed increased levels of proinflammatory cytokines and chemokines in the colon of DSS treated ERAP1-/- mice as compared to identically stimulated WT mice. Interestingly, stimulated ERAP1-/- BMDMs and CD4+ T cells simultaneously demonstrated exaggerated ER stress, assessed by increased expression of ER stress-associated genes, a state that could be reverted to WT levels with use of the ER stress inhibitor Tauroursodeoxycholic acid (TUDCA). CONCLUSIONS: Together, these results not only suggest that ERAP1 is important for regulating inflammasome dependent innate immune response pathways in vivo, but also propose a mechanism that underlies these changes, that may be associated with increased ER stress due to lack of normal ERAP1 functions.


Assuntos
Aminopeptidases , Estresse do Retículo Endoplasmático , Inflamassomos , Aminopeptidases/genética , Aminopeptidases/metabolismo , Animais , Imunidade Inata/genética , Camundongos , Camundongos Knockout , Antígenos de Histocompatibilidade Menor/genética
4.
J Neuroinflammation ; 19(1): 241, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36199066

RESUMO

BACKGROUND: Multiple sclerosis (MS) is a chronic, debilitating condition characterized by CNS autoimmunity stemming from a complex etiology involving both environmental and genetic factors. Our current understanding of MS points to dysregulation of the immune system as the pathogenic culprit, however, it remains unknown as to how the many genes associated with increased susceptibility to MS are involved. One such gene linked to MS susceptibility and known to regulate immune function is the self-ligand immune cell receptor SLAMF7. METHODS: We subjected WT and SLAMF7-/- mice to multiple EAE models, compared disease severity, and comprehensively profiled the CNS immune landscape of these mice. We identified all SLAMF7-expressing CNS immune cells and compared the entire CNS immune niche between genotypes. We performed deep phenotyping and in vitro functional studies of B and T cells via spectral cytometry and BioPlex assays. Adoptive transfer studies involving the transfer of WT and SLAMF7-/- B cells into B cell-deficient mice (µMT) were also performed. Finally, B-T cell co-culture studies were performed, and a comparative cell-cell interaction network derived from scRNA-seq data of SLAMF7+ vs. SLAMF7- human CSF immune cells was constructed. RESULTS: We found SLAMF7-/- mice to be more susceptible to EAE compared to WT mice and found SLAMF7 to be expressed on numerous CNS immune cell subsets. Absence of SLAMF7 did not grossly alter the CNS immune landscape, but allowed for altered immune cell subset infiltration during EAE in a model-dependent manner. Global lack of SLAMF7 expression increased myeloid cell activation states along with augmented T cell anti-MOG immunity. B cell profiling studies revealed increased activation states of specific plasma and B cell subsets in SLAMF7-/- mice during EAE, and functional co-culture studies determined that SLAMF7-/- B cells induce exaggerated T cell activation. Adoptive transfer studies revealed that the increased susceptibility of SLAMF7-/- mice to EAE is partly B cell dependent and reconstruction of the human CSF SLAMF7-interactome found B cells to be critical to cell-cell communication between SLAMF7-expressing cells. CONCLUSIONS: Our studies have identified novel roles for SLAMF7 in CNS immune regulation and B cell function, and illuminate underpinnings of the genetic association between SLAMF7 and MS.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Imunidade Adaptativa , Animais , Autoimunidade , Sistema Nervoso Central/patologia , Encefalomielite Autoimune Experimental/metabolismo , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/patologia , Família de Moléculas de Sinalização da Ativação Linfocitária/genética , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo
5.
J Immunol ; 202(1): 228-238, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30530590

RESUMO

Current advances in combined antiretroviral therapy have rendered HIV infection a chronic, manageable disease; however, the problem of persistent immune activation still remains despite treatment. The immune cell receptor SLAMF7 has been shown to be upregulated in diseases characterized by chronic immune activation. In this study, we studied the function of the SLAMF7 receptor in immune cells of HIV patients and the impacts of SLAMF7 signaling on peripheral immune activation. We observed increased frequencies of SLAMF7+ PBMCs in HIV+ individuals in a clinical phenotype-dependent manner, with discordant and long-term nonprogressor patients showing elevated SLAMF7 levels, and elite controllers showing levels comparable to healthy controls. We also noted that SLAMF7 was sensitive to IFN-⍺ stimulation, a factor elevated during HIV infection. Further studies revealed SLAMF7 to be a potent inhibitor of the monocyte-derived proinflammatory chemokine CXCL10 (IP-10) and other CXCR3 ligands, except in a subset of HIV+ patients termed SLAMF7 silent (SF7S). Studies utilizing small molecule inhibitors revealed that the mechanism of CXCL10 inhibition is independent of known SLAMF7 binding partners. Furthermore, we determined that SLAMF7 activation on monocytes is able to decrease their susceptibility to HIV-1 infection in vitro via downregulation of CCR5 and upregulation of the CCL3L1 chemokine. Finally, we discovered that neutrophils do not express SLAMF7, are CXCL10+ at baseline, are able to secrete CXCL10 in response to IFN-⍺ and LPS, and are nonresponsive to SLAMF7 signaling. These findings implicate the SLAMF7 receptor as an important regulator of IFN-⍺-driven innate immune responses during HIV infection.


Assuntos
Infecções por HIV/imunologia , HIV-1/fisiologia , Interferon-alfa/metabolismo , Neutrófilos/imunologia , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Células Cultivadas , Quimiocina CCL3/metabolismo , Quimiocina CXCL10/metabolismo , Progressão da Doença , Suscetibilidade a Doenças , Humanos , Fenótipo , Receptores CCR5/metabolismo , Transdução de Sinais , Regulação para Cima
6.
J Pharmacol Exp Ther ; 371(1): 191-201, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31383729

RESUMO

Cannabis is widely used in the United States, with an estimated prevalence of 9.5%. Certain cannabinoids in Cannabis sativa, Δ9-tetrahydrocannabinol (THC) in particular, possess immune-modulating and anti-inflammatory activity. Depending on the context, the anti-inflammatory activity of cannabinoids may be beneficial (e.g., in treating inflammatory diseases) or detrimental to normal immune defense against pathogens. The potential beneficial effect of cannabinoids on chronic neuroinflammation has gained recent attention. Monocyte migration to the brain has been implicated as a key event in chronic neuroinflammation and in the etiology of central nervous system diseases including viral infection (e.g., human immunodeficiency virus-associated neurocognitive disorder). In the brain, monocytes can contribute to neuroinflammation through interactions with astrocytes, including inducing astrocyte secretion of cytokines and chemokines. In a human coculture system, monocyte-derived interleukin (IL)-1ß due to Toll-like receptor 7 (TLR7) activation has been identified to promote astrocyte production of monocyte chemoattractant protein (MCP)-1 and IL-6. THC treatment of the TLR7-stimulated coculture suppressed monocyte secretion of IL-1ß, resulting in decreased astrocyte production of MCP-1 and IL-6. Furthermore, THC displayed direct inhibition of monocytes, as TLR7-stimulated monocyte monocultures treated with THC also showed suppressed IL-1ß production. The cannabinoid receptor 2 (CB2) agonist, JWH-015, impaired monocyte IL-1ß production similar to that of THC, suggesting that THC acts, in part, through CB2. THC also suppressed key elements of the IL-1ß production pathway, including IL1B mRNA levels and caspase-1 activity. Collectively, this study demonstrates that the anti-inflammatory properties of THC suppress TLR7-induced monocyte secretion of IL-1ß through CB2, which results in decreased astrocyte secretion of MCP-1 and IL-6. SIGNIFICANCE STATEMENT: Because cannabis use is highly prevalent in the United States and has putative anti-inflammatory properties, it is important to investigate the effect of cannabinoids on immune cell function. Furthermore, cannabinoids have garnered particular interest due to their potential beneficial effects on attenuating viral-induced chronic neuroinflammation. This study utilized a primary human coculture system to demonstrate that the major psychotropic cannabinoid in cannabis, Δ9-tetrahydrocannabinol, and a cannabinoid receptor-2 selective agonist suppress specific monocyte-mediated astrocyte inflammatory responses.


Assuntos
Astrócitos/efeitos dos fármacos , Agonistas de Receptores de Canabinoides/farmacologia , Quimiocina CCL2/metabolismo , Dronabinol/farmacologia , Interleucina-6/metabolismo , Monócitos/efeitos dos fármacos , Receptor 7 Toll-Like/metabolismo , Astrócitos/metabolismo , Células Cultivadas , Quimiocina CCL2/genética , Técnicas de Cocultura , Humanos , Indóis/farmacologia , Interleucina-6/genética , Monócitos/metabolismo
7.
Hum Mutat ; 39(6): 834-840, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29573043

RESUMO

Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed enzymes that ligate amino acids onto tRNA molecules. Genes encoding ARSs have been implicated in phenotypically diverse dominant and recessive human diseases. The charging of tRNAPHE with phenylalanine is performed by a tetrameric enzyme that contains two alpha (FARSA) and two beta (FARSB) subunits. To date, mutations in the genes encoding these subunits (FARSA and FARSB) have not been implicated in any human disease. Here, we describe a patient with a severe, lethal, multisystem, developmental phenotype who was compound heterozygous for FARSB variants: p.Thr256Met and p.His496Lysfs*14. Expression studies using fibroblasts isolated from the proband revealed a severe depletion of both FARSB and FARSA protein levels. These data indicate that the FARSB variants destabilize total phenylalanyl-tRNA synthetase levels, thus causing a loss-of-function effect. Importantly, our patient shows strong phenotypic overlap with patients that have recessive diseases associated with other ARS loci; these observations strongly support the pathogenicity of the identified FARSB variants and are consistent with the essential function of phenylalanyl-tRNA synthetase in human cells. In sum, our clinical, genetic, and functional analyses revealed the first FARSB variants associated with a human disease phenotype and expand the locus heterogeneity of ARS-related human disease.


Assuntos
Aminoacil-tRNA Sintetases/genética , Predisposição Genética para Doença , Mutação com Perda de Função/genética , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/deficiência , Regulação da Expressão Gênica , Humanos , Masculino , Fenótipo , Fenilalanina-tRNA Ligase/genética
8.
Int Immunol ; 29(6): 277-289, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28814066

RESUMO

Specific variants of endoplasmic reticulum-associated aminopeptidase 1 (ERAP1) identified by genome-wide association study modify the risk for developing ankylosing spondylitis. We previously confirmed that disease-associated ERAP1 variants have altered enzymatic abilities that can impact upon the production of pro-inflammatory cytokines from cells expressing the same ERAP1 variants. To determine if these ERAP1 variants also impacted immune responses in vivo, we generated two strains of transgenic mice expressing human ERAP1 genes containing non-synonymous single-nucleotide polymorphisms associated with an increased (ERAP1-High) or decreased (ERAP1-Low) risk for developing autoimmune disease. After vaccination with foreign antigens, ERAP1-High mice generated unique populations of antigen-specific T-cell clones. The expression of ERAP1-High also reduced MHC-I expression on the surface of multiple cell types, demonstrating a global impact on the MHC-I peptidome. ERAP1 variants also affected the innate immune system, because NK cells from murine ERAP1 (mERAP1) knockout mice and ERAP1-High/mERAP1-/- mice had decreased surface expression of the activating receptor NKG2D on their NK and T cells, and NK cells derived from mERAP1-/- mice or ERAP1-Low mice demonstrated more active NK cell killing than NK cells derived from wild-type or ERAP1-High mice. Finally, these studies were conducted in female mice, as all male ERAP1-High mice died in utero or shortly after birth, making ERAP1-High one of the only dominant lethal autosomal genes known in mammals. Together, these results present the first direct evidence that human disease-associated ERAP1 variants can greatly alter survival, as well as antigen presentation, T-cell repertoire and NK cell responses in vivo.


Assuntos
Aminopeptidases/genética , Citotoxicidade Imunológica/genética , Células Matadoras Naturais/fisiologia , Antígenos de Histocompatibilidade Menor/genética , Espondilite Anquilosante/genética , Linfócitos T/fisiologia , Imunidade Adaptativa/genética , Animais , Apresentação de Antígeno , Células Clonais , Feminino , Predisposição Genética para Doença , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Imunidade Inata/genética , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Polimorfismo de Nucleotídeo Único , Receptores de Antígenos de Linfócitos T/genética , Risco , Transgenes/genética
9.
J Immunol ; 196(4): 1741-52, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26792800

RESUMO

There is a compelling need for more effective vaccine adjuvants to augment induction of Ag-specific adaptive immune responses. Recent reports suggested the bacterial second messenger bis-(3'-5')-cyclic-dimeric-guanosine monophosphate (c-di-GMP) acts as an innate immune system modulator. We recently incorporated a Vibrio cholerae diguanylate cyclase into an adenovirus vaccine, fostering production of c-di-GMP as well as proinflammatory responses in mice. In this study, we recombined a more potent diguanylate cyclase gene, VCA0848, into a nonreplicating adenovirus serotype 5 (AdVCA0848) that produces elevated amounts of c-di-GMP when expressed in mammalian cells in vivo. This novel platform further improved induction of type I IFN-ß and activation of innate and adaptive immune cells early after administration into mice as compared with control vectors. Coadministration of the extracellular protein OVA and the AdVCA0848 adjuvant significantly improved OVA-specific T cell responses as detected by IFN-γ and IL-2 ELISPOT, while also improving OVA-specific humoral B cell adaptive responses. In addition, we found that coadministration of AdVCA0848 with another adenovirus serotype 5 vector expressing the HIV-1-derived Gag Ag or the Clostridium difficile-derived toxin B resulted in significant inhibitory effects on the induction of Gag and toxin B-specific adaptive immune responses. As a proof of principle, these data confirm that in vivo synthesis of c-di-GMP stimulates strong innate immune responses that correlate with enhanced adaptive immune responses to concomitantly administered extracellular Ag, which can be used as an adjuvant to heighten effective immune responses for protein-based vaccine platforms against microbial infections and cancers.


Assuntos
Imunidade Adaptativa/imunologia , Adjuvantes Imunológicos/farmacologia , Antígenos/imunologia , GMP Cíclico/análogos & derivados , Imunoterapia/métodos , Adenoviridae/imunologia , Animais , Western Blotting , GMP Cíclico/biossíntese , GMP Cíclico/imunologia , Ensaio de Imunoadsorção Enzimática , ELISPOT , Citometria de Fluxo , Vetores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Transdução Genética
10.
Proc Natl Acad Sci U S A ; 110(49): 19890-5, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24248368

RESUMO

Intracellular aminopeptidases endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2), and as well as insulin-regulated aminopeptidase (IRAP) process antigenic epitope precursors for loading onto MHC class I molecules and regulate the adaptive immune response. Their activity greatly affects the antigenic peptide repertoire presented to cytotoxic T lymphocytes and as a result can regulate cytotoxic cellular responses contributing to autoimmunity or immune evasion by viruses and cancer cells. Therefore, pharmacological regulation of their activity is a promising avenue for modulating the adaptive immune response with possible applications in controlling autoimmunity, in boosting immune responses to pathogens, and in cancer immunotherapy. In this study we exploited recent structural and biochemical analysis of ERAP1 and ERAP2 to design and develop phosphinic pseudopeptide transition state analogs that can inhibit this family of enzymes with nM affinity. X-ray crystallographic analysis of one such inhibitor in complex with ERAP2 validated our design, revealing a canonical mode of binding in the active site of the enzyme, and highlighted the importance of the S2' pocket for achieving inhibitor potency. Antigen processing and presentation assays in HeLa and murine colon carcinoma (CT26) cells showed that these inhibitors induce increased cell-surface antigen presentation of transfected and endogenous antigens and enhance cytotoxic T-cell responses, indicating that these enzymes primarily destroy epitopes in those systems. This class of inhibitors constitutes a promising tool for controlling the cellular adaptive immune response in humans by modulating the antigen processing and presentation pathway.


Assuntos
Aminopeptidases/antagonistas & inibidores , Apresentação de Antígeno/imunologia , Modelos Moleculares , Linfócitos T Citotóxicos/imunologia , Aminopeptidases/química , Aminopeptidases/metabolismo , Animais , Apresentação de Antígeno/efeitos dos fármacos , Sítios de Ligação/imunologia , Linhagem Celular Tumoral , Cristalografia por Raios X , Cistinil Aminopeptidase/metabolismo , Células HeLa , Humanos , Camundongos , Antígenos de Histocompatibilidade Menor , Estrutura Molecular , Ácidos Fosfínicos , Engenharia de Proteínas , Linfócitos T Citotóxicos/efeitos dos fármacos
11.
Cancer Immunol Immunother ; 64(4): 479-91, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25655760

RESUMO

The need for novel, effective adjuvants that are capable of eliciting stronger cellular and humoral adaptive immune responses to antigenic targets is well understood in the vaccine development field. Unfortunately, many adjuvants investigated thus far are either too toxic for human application or too weak to induce a substantial response against difficult antigens, such as tumor-associated antigens (TAAs). In spite of this trend, clinical investigations of recombinant Eimeria antigen (rEA) have revealed this protein to be a non-toxic immunogenic agent with the ability to trigger a Th1-predominant response in both murine and human subjects. Our past studies have shown that the injection of a rEA-encoding adenovirus (rAd5-rEA) alongside an HIV antigen-encoding adenovirus greatly improves the adaptive immune response against this pathogen-derived transgene. In this report, we investigated whether rAd5-rEA could promote and/or alter cytotoxic memory responses toward carcinoembryonic antigen (CEA), a colorectal cancer-related TAA. We found that the addition of rAd5-rEA to an Ad-based CEA vaccine induced a dose-dependent increase in several anti-CEA T and B cell responses. Moreover, inclusion of rAd5-rEA increased the number of CEA-derived antigenic epitopes that elicited significant cell-mediated and IgG-mediated recognition. These enhanced anti-CEA immune responses also translated into superior CEA-targeted cell killing, as evaluated by an in vivo cytotoxic T lymphocyte assay. Overall, these results suggest that co-administration of rAd5-rEA with a tumor antigen vaccine can substantially boost and broaden the TAA-specific adaptive memory response, thereby validating the potential of rAd5-rEA to be a beneficial adjuvant during therapeutic cancer vaccination.


Assuntos
Adenoviridae/genética , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/farmacologia , Antígeno Carcinoembrionário/imunologia , Neoplasias do Colo/imunologia , Eimeria/imunologia , Linfócitos T Citotóxicos/imunologia , Adenoviridae/imunologia , Adjuvantes Imunológicos , Animais , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Antígeno Carcinoembrionário/genética , Neoplasias do Colo/prevenção & controle , Eimeria/genética , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Vetores Genéticos/administração & dosagem , Vetores Genéticos/imunologia , Vetores Genéticos/farmacologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proibitinas , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Vacinação
12.
Int Immunol ; 26(5): 291-303, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24374770

RESUMO

The signaling lymphocytic activation molecule (SLAM) receptor-associated adaptor Ewing's sarcoma-associated transcript-2 (EAT-2) is primarily expressed in innate immune cells including dendritic cells (DCs), macrophages and NK cells. A recent human HIV vaccine study confirmed that EAT-2 expression was associated with the enhanced immunogenicity induced by the MRKAd5/HIV vaccine. We previously harnessed the capability of EAT-2 to modulate signaling mediated by SLAM receptors and demonstrated that by incorporating EAT-2 expression into vaccines, one could enhance innate and adaptive immune responses in mice, even in the face of pre-existing immunity to the vaccine vectors. Herein, we investigated the innate immune responses of human cells exposed to EAT-2-over-expressing vaccines. Our results demonstrate that EAT-2 over-expression can significantly alter the kinetics of critical pro-inflammatory cytokine and chemokine responses elaborated by human PBMCs. In addition, enhanced DC maturation and increased monocyte phagocytosis were observed in EAT-2-transduced human cells. We also found that EAT-2 over-expression improved antigen presentation by human cells. Moreover, EAT-2 over-expression increased the anti-tumor activity of human NK cells against K562 tumor cell targets. Many of these responses were extinguished with use of an EAT-2 variant carrying a mutant SH2 domain (R31Q), suggesting a critical role for the interaction between EAT-2 and SLAM receptors in mediating these responses. In conclusion, these results provide evidence that EAT-2 interacts with key components of multiple arms of the human innate immune system, and that this role highlights the potential for targeting EAT-2 functions so as to improve a number of human immunotherapeutic approaches, including vaccine development.


Assuntos
Sistema Imunitário/imunologia , Imunidade Inata/imunologia , Imunomodulação/imunologia , Fatores de Transcrição/imunologia , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Células Cultivadas , Técnicas de Cocultura , Citocinas/imunologia , Citocinas/metabolismo , Citotoxicidade Imunológica/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Citometria de Fluxo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Sistema Imunitário/citologia , Sistema Imunitário/metabolismo , Imunidade Inata/genética , Imunomodulação/genética , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Células K562 , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Microscopia de Fluorescência , Monócitos/imunologia , Monócitos/metabolismo , Mutação , Receptor 2 Desencadeador da Citotoxicidade Natural/imunologia , Receptor 2 Desencadeador da Citotoxicidade Natural/metabolismo , Fagocitose/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Domínios de Homologia de src/genética , Domínios de Homologia de src/imunologia
13.
Int Immunol ; 26(12): 685-95, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25087231

RESUMO

Endoplasmic reticulum aminopeptidase 1 (ERAP1) is a critical component of the adaptive immune system that has been shown to increase or decrease the presentation of specific peptides on MHC class I molecules. Here, we have demonstrated that ERAP1 functions are not only important during the presentation of antigen-derived peptides, but these functions can also completely change which antigen-derived peptides ultimately become selected as immunodominant T-cell epitopes. Our results suggest that ERAP1 may do this by destroying epitopes that would otherwise become immunodominant in the absence of adequate ERAP1 functionality. We further establish that ERAP1-mediated influences on T-cell functions are both qualitative and quantitative, by demonstrating that loss of ERAP1 function redirects CTL killing toward a different set of antigen-derived epitopes and increases the percent of antigen-specific memory T cells elicited by antigen exposure. As a result, our studies suggest that normal ERAP1 activity can act to suppress the numbers of T effector memory cells that respond to a given antigen. This unique finding may shed light on why certain ERAP1 single nucleotide polymorphisms are associated with several autoimmune diseases, for example, by significantly altering the robustness and quality of CD8+ T-cell memory responses to antigen-derived peptides.


Assuntos
Aminopeptidases/metabolismo , Antígenos/imunologia , Citotoxicidade Imunológica , Epitopos Imunodominantes/imunologia , Memória Imunológica , Peptídeos/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Imunidade Adaptativa , Aminopeptidases/genética , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Seleção Clonal Mediada por Antígeno , Citocinas/biossíntese , Citotoxicidade Imunológica/genética , Epitopos Imunodominantes/química , Epitopos Imunodominantes/genética , Memória Imunológica/genética , Camundongos , Camundongos Knockout , Antígenos de Histocompatibilidade Menor
14.
J Immunol ; 189(3): 1349-59, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22745373

RESUMO

The mixed results from recent vaccine clinical trials targeting HIV-1 justify the need to enhance the potency of HIV-1 vaccine platforms in general. Use of first-generation recombinant adenovirus serotype 5 (rAd5) platforms failed to protect vaccinees from HIV-1 infection. One hypothesis is that the rAd5-based vaccine failed due to the presence of pre-existing Ad5 immunity in many vaccines. We recently confirmed that EAT-2-expressing rAd5 vectors uniquely activate the innate immune system and improve cellular immune responses against rAd5-expressed Ags, inclusive of HIV/Gag. In this study, we report that use of the rAd5-EAT-2 vaccine can also induce potent cellular immune responses to HIV-1 Ags despite the presence of Ad5-specific immunity. Compared to controls expressing a mutant SH2 domain form of EAT-2, Ad5 immune mice vaccinated with an rAd5-wild-type EAT-2 HIV/Gag-specific vaccine formulation significantly facilitated the induction of several arms of the innate immune system. These responses positively correlated with an improved ability of the vaccine to induce stronger effector memory T cell-biased, cellular immune responses to a coexpressed Ag despite pre-existing anti-Ad5 immunity. Moreover, inclusion of EAT-2 in the vaccine mixture improves the generation of polyfunctional cytolytic CD8(+) T cell responses as characterized by enhanced production of IFN-γ, TNF-α, cytotoxic degranulation, and increased in vivo cytolytic activity. These data suggest a new approach whereby inclusion of EAT-2 expression in stringent human vaccination applications can provide a more effective vaccine against HIV-1 specifically in Ad5 immune subjects.


Assuntos
Vacinas contra a AIDS/farmacologia , Vacinas Anticâncer/farmacologia , Imunidade Inata , Memória Imunológica , Subpopulações de Linfócitos T/imunologia , Fatores de Transcrição/fisiologia , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Imunidade Adaptativa/genética , Adenoviridae/genética , Adenoviridae/imunologia , Animais , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Linhagem Celular , Células Cultivadas , Vetores Genéticos , Imunidade Inata/genética , Memória Imunológica/genética , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/patologia , Fatores de Transcrição/biossíntese , Fatores de Transcrição/genética , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas Sintéticas/farmacologia
15.
J Immunol ; 189(5): 2383-92, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22837489

RESUMO

Endoplasmic reticulum aminopeptidases 1 and 2 (ERAP1 and ERAP2) cooperate to trim antigenic peptide precursors for loading onto MHC class I molecules and help regulate the adaptive immune response. Common coding single nucleotide polymorphisms in ERAP1 and ERAP2 have been linked with predisposition to human diseases ranging from viral and bacterial infections to autoimmunity and cancer. It has been hypothesized that altered Ag processing by these enzymes is a causal link to disease etiology, but the molecular mechanisms are obscure. We report in this article that the common ERAP2 single nucleotide polymorphism rs2549782 that codes for amino acid variation N392K leads to alterations in both the activity and the specificity of the enzyme. Specifically, the 392N allele excises hydrophobic N-terminal residues from epitope precursors up to 165-fold faster compared with the 392K allele, although both alleles are very similar in excising positively charged N-terminal amino acids. These effects are primarily due to changes in the catalytic turnover rate (k(cat)) and not in the affinity for the substrate. X-ray crystallographic analysis of the ERAP2 392K allele suggests that the polymorphism interferes with the stabilization of the N terminus of the peptide both directly and indirectly through interactions with key residues participating in catalysis. This specificity switch allows the 392N allele of ERAP2 to supplement ERAP1 activity for the removal of hydrophobic N-terminal residues. Our results provide mechanistic insight to the association of this ERAP2 polymorphism with disease and support the idea that polymorphic variation in Ag processing enzymes constitutes a component of immune response variability in humans.


Assuntos
Aminopeptidases/genética , Apresentação de Antígeno/imunologia , Retículo Endoplasmático/enzimologia , Switching de Imunoglobulina/imunologia , Polimorfismo de Nucleotídeo Único/imunologia , Sequência de Aminoácidos , Apresentação de Antígeno/genética , Cristalografia por Raios X , Retículo Endoplasmático/genética , Retículo Endoplasmático/imunologia , Ativação Enzimática/genética , Ativação Enzimática/imunologia , Variação Genética/imunologia , Células HeLa , Humanos , Switching de Imunoglobulina/genética , Dados de Sequência Molecular , Especificidade por Substrato/genética , Especificidade por Substrato/imunologia
16.
Spartan Med Res J ; 9(1): 115618, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38911052

RESUMO

The Spartan Medical Research Journal (SMRJ) is pleased to publish abstracts from the First Annual Research Day hosted by the Michigan State University College of Osteopathic Medicine (MSUCOM), held in Novi, Michigan, on May 15, 2023. Sponsored by MSUCOM, the Statewide Campus System (SCS), and Research, Innovation, and Scholarly Engagement (RISE), this event showcased a total of 139 selected research abstracts following a meticulous blinded review by the MSUCOM Research Day Planning Committee and SMRJ editorial staff. These abstracts were subsequently presented at the MSUCOM First Annual Research Day in 2023, with awards for exceptional oral and poster presentations conferred on May 15, 2023. Of the 139 presentations that were ultimately chosen, 45 authors consented and elected to have their abstracts published in SMRJ. The abstracts from 2023 encompass a wide array of contemporary medical and clinical subjects, incorporating a variety of research designs that cover basic science, clinical research, case reports, medical education, and quality improvement. While abstracts offer concise overview of research projects or presentations, they do not permit a comprehensive evaluation of the scientific rigor employed in the respective works. Although these abstracts offer preliminary results that may necessitate further refinement and validation, they serve a vital function in disseminating novel research concepts and advancements in the discipline of medicine. This knowledge-sharing promotes meaningful dialogue among researchers, clinicians, and educators, thereby making a valuable contribution to the collective body of knowledge in the fields of medical sciences and osteopathic medicine. Andrea Amalfitano, DO, PhD Osteopathic Heritage Foundation Professor of Pediatrics, Microbiology and Molecular Genetics Professor, BioMolecular Science Gateway Editor-in-Chief, Spartan Medical Research Journal (SMRJ) MSU College of Osteopathic Medicine- Statewide Campus System C. Patricia Obando S., PhD Associate Dean and DIO, Graduate Medical Education Associate Professor- MSU College of Osteopathic Medicine- Statewide Campus System Rana Ismail, PhD, MSc, CPHQ Director of Research Editor, Spartan Medical Research Journal (SMRJ) MSU College of Osteopathic Medicine- Statewide Campus System Francis Akenami, BMLS, PhD, MSc, FIMLS Managing Editor Spartan Medical Research Journal (SMRJ) MSU College of Osteopathic Medicine- Statewide Campus System.

17.
Cancer Immunol Immunother ; 62(8): 1293-301, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23624851

RESUMO

First-generation, E1-deleted adenovirus subtype 5 (Ad5)-based vectors, although promising platforms for use as cancer vaccines, are impeded in activity by naturally occurring or induced Ad-specific neutralizing antibodies. Ad5-based vectors with deletions of the E1 and the E2b regions (Ad5 [E1-, E2b-]), the latter encoding the DNA polymerase and the pre-terminal protein, by virtue of diminished late phase viral protein expression, were hypothesized to avoid immunological clearance and induce more potent immune responses against the encoded tumor antigen transgene in Ad-immune hosts. Indeed, multiple homologous immunizations with Ad5 [E1-, E2b-]-CEA(6D), encoding the tumor antigen carcinoembryonic antigen (CEA), induced CEA-specific cell-mediated immune (CMI) responses with antitumor activity in mice despite the presence of preexisting or induced Ad5-neutralizing antibody. In the present phase I/II study, cohorts of patients with advanced colorectal cancer were immunized with escalating doses of Ad5 [E1-, E2b-]-CEA(6D). CEA-specific CMI responses were observed despite the presence of preexisting Ad5 immunity in a majority (61.3 %) of patients. Importantly, there was minimal toxicity, and overall patient survival (48 % at 12 months) was similar regardless of preexisting Ad5 neutralizing antibody titers. The results demonstrate that, in cancer patients, the novel Ad5 [E1-, E2b-] gene delivery platform generates significant CMI responses to the tumor antigen CEA in the setting of both naturally acquired and immunization-induced Ad5-specific immunity.


Assuntos
Vacinas Anticâncer/imunologia , Antígeno Carcinoembrionário/imunologia , Neoplasias Colorretais/imunologia , Vetores Genéticos/imunologia , Linfócitos T/imunologia , Adenoviridae/genética , Adenoviridae/imunologia , Adulto , Idoso , Anticorpos Neutralizantes/imunologia , Vacinas Anticâncer/administração & dosagem , Vacinas Anticâncer/genética , Antígeno Carcinoembrionário/genética , Estudos de Coortes , Neoplasias Colorretais/terapia , Relação Dose-Resposta a Droga , Ensaio de Imunoadsorção Enzimática , Feminino , Vetores Genéticos/genética , Humanos , Imunização/métodos , Interferon gama/imunologia , Interferon gama/metabolismo , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Linfócitos T/metabolismo , Fatores de Tempo , Resultado do Tratamento
18.
J Immunol ; 186(2): 722-32, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-21149608

RESUMO

Recent studies have shown that activation of the signaling lymphocytic activation molecule (SLAM) family of receptors plays an important role in several aspects of immune regulation. However, translation of this knowledge into a useful clinical application has not been undertaken. One important area where SLAM-mediated immune regulation may have keen importance is in the field of vaccinology. Because SLAM signaling plays such a critical role in the innate and adaptive immunity, we endeavored to develop a strategy to improve the efficacy of vaccines by incorporation of proteins known to be important in SLAM-mediated signaling. In this study, we hypothesized that coexpression of the SLAM adapter EWS-FLI1-activated transcript 2 (EAT-2) along with a pathogen-derived Ag would facilitate induction of beneficial innate immune responses, resulting in improved induction of Ag-specific adaptive immune responses. To test this hypothesis, we used rAd5 vector-based vaccines expressing murine EAT-2, or the HIV-1-derived Ag Gag. Compared with appropriate controls, rAd5 vectors expressing EAT-2 facilitated bystander activation of NK, NKT, B, and T cells early after their administration into animals. EAT-2 overexpression also augments the expression of APC (macrophages and dendritic cells) surface markers. Indeed, this multitiered activation of the innate immune system by vaccine-mediated EAT-2 expression enhanced the induction of Ag-specific cellular immune responses. Because both mice and humans express highly conserved EAT-2 adapters, our results suggest that human vaccination strategies that specifically facilitate SLAM signaling may improve vaccine potency when targeting HIV Ags specifically, as well as numerous other vaccine targets in general.


Assuntos
Adenovírus Humanos/imunologia , Peptídeos e Proteínas de Sinalização Intracelular/administração & dosagem , Peptídeos e Proteínas de Sinalização Intracelular/genética , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Vacinas contra a AIDS/administração & dosagem , Vacinas contra a AIDS/genética , Vacinas contra a AIDS/imunologia , Proteínas Adaptadoras de Transdução de Sinal , Infecções por Adenoviridae/genética , Infecções por Adenoviridae/imunologia , Infecções por Adenoviridae/terapia , Adenovírus Humanos/genética , Animais , Linhagem Celular , Células Cultivadas , Engenharia Genética/métodos , Vetores Genéticos/administração & dosagem , Vetores Genéticos/imunologia , Humanos , Imunidade Celular/genética , Imunidade Inata/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Família Multigênica/imunologia , Proteína Associada à Molécula de Sinalização da Ativação Linfocitária , Fatores de Transcrição/administração & dosagem , Fatores de Transcrição/fisiologia , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia
19.
J Immunol ; 186(4): 1909-13, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21242517

RESUMO

ER aminopeptidase 1 (ERAP1) customizes antigenic peptide precursors for MHC class I presentation and edits the antigenic peptide repertoire. Coding single nucleotide polymorphisms (SNPs) in ERAP1 were recently linked with predisposition to autoimmune disease, suggesting a link between pathogenesis of autoimmunity and ERAP1-mediated Ag processing. To investigate this possibility, we analyzed the effect that disease-linked SNPs have on Ag processing by ERAP1 in vitro. Michaelis-Menten analysis revealed that the presence of SNPs affects the Michaelis constant and turnover number of the enzyme. Strikingly, specific ERAP1 allele-substrate combinations deviate from standard Michaelis-Menten behavior, demonstrating substrate-inhibition kinetics; to our knowledge, this phenomenon has not been described for this enzyme. Cell-based Ag-presentation analysis was consistent with changes in the substrate inhibition constant K(i), further supporting that ERAP1 allelic composition may affect Ag processing in vivo. We propose that these phenomena should be taken into account when evaluating the possible link between Ag processing and autoimmunity.


Assuntos
Aminopeptidases/genética , Antígenos/biossíntese , Retículo Endoplasmático/enzimologia , Retículo Endoplasmático/imunologia , Biossíntese Peptídica/genética , Polimorfismo de Nucleotídeo Único/imunologia , Regiões 5' não Traduzidas/imunologia , Alelos , Substituição de Aminoácidos/genética , Aminopeptidases/metabolismo , Aminopeptidases/fisiologia , Apresentação de Antígeno/genética , Arginina/genética , Linhagem Celular , Retículo Endoplasmático/genética , Glutamina/genética , Antígenos HLA-A/genética , Antígenos HLA-A/metabolismo , Antígeno HLA-B27/metabolismo , Células HeLa , Humanos , Lisina/genética , Antígenos de Histocompatibilidade Menor , Biossíntese Peptídica/imunologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Especificidade por Substrato/genética
20.
Nat Genet ; 33(4): 463-5, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12627230

RESUMO

We took advantage of overlapping interstitial deletions at chromosome 8p11-p12 in two individuals with contiguous gene syndromes and defined an interval of roughly 540 kb associated with a dominant form of Kallmann syndrome, KAL2. We establish here that loss-of-function mutations in FGFR1 underlie KAL2 whereas a gain-of-function mutation in FGFR1 has been shown to cause a form of craniosynostosis. Moreover, we suggest that the KAL1 gene product, the extracellular matrix protein anosmin-1, is involved in FGF signaling and propose that the gender difference in anosmin-1 dosage (because KAL1 partially escapes X inactivation) explains the higher prevalence of the disease in males.


Assuntos
Proteínas da Matriz Extracelular , Síndrome de Kallmann/genética , Mutação , Receptores Proteína Tirosina Quinases/genética , Receptores de Fatores de Crescimento de Fibroblastos/genética , Moléculas de Adesão Celular/metabolismo , Deleção Cromossômica , Cromossomos Humanos Par 8 , Cromossomos Humanos X , Éxons , Matriz Extracelular/metabolismo , Saúde da Família , Feminino , Genes Dominantes , Humanos , Íntrons , Masculino , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Linhagem , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos , Fatores Sexuais , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa