Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 575(7783): 500-504, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31723261

RESUMO

One of the most abundant sources of organic carbon in the ocean is glycolate, the secretion of which by marine phytoplankton results in an estimated annual flux of one petagram of glycolate in marine environments1. Although it is generally accepted that glycolate is oxidized to glyoxylate by marine bacteria2-4, the further fate of this C2 metabolite is not well understood. Here we show that ubiquitous marine Proteobacteria are able to assimilate glyoxylate via the ß-hydroxyaspartate cycle (BHAC) that was originally proposed 56 years ago5. We elucidate the biochemistry of the BHAC and describe the structure of its key enzymes, including a previously unknown primary imine reductase. Overall, the BHAC enables the direct production of oxaloacetate from glyoxylate through only four enzymatic steps, representing-to our knowledge-the most efficient glyoxylate assimilation route described to date. Analysis of marine metagenomes shows that the BHAC is globally distributed and on average 20-fold more abundant than the glycerate pathway, the only other known pathway for net glyoxylate assimilation. In a field study of a phytoplankton bloom, we show that glycolate is present in high nanomolar concentrations and taken up by prokaryotes at rates that allow a full turnover of the glycolate pool within one week. During the bloom, genes that encode BHAC key enzymes are present in up to 1.5% of the bacterial community and actively transcribed, supporting the role of the BHAC in glycolate assimilation and suggesting a previously undescribed trophic interaction between autotrophic phytoplankton and heterotrophic bacterioplankton.


Assuntos
Organismos Aquáticos/metabolismo , Ácido Aspártico/análogos & derivados , Glicolatos/metabolismo , Redes e Vias Metabólicas , Proteobactérias/metabolismo , Oxirredutases do Álcool/metabolismo , Aldeído Liases/metabolismo , Organismos Aquáticos/enzimologia , Ácido Aspártico/metabolismo , Biocatálise , Glioxilatos/metabolismo , Hidroliases/metabolismo , Cinética , Oxirredutases/metabolismo , Fitoplâncton/enzimologia , Fitoplâncton/metabolismo , Proteobactérias/enzimologia , Transaminases/metabolismo
2.
Environ Microbiol ; 26(2): e16580, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38254313

RESUMO

Heterotrophic bacteria hydrolyze high molecular weight (HMW) organic matter extracellularly prior to uptake, resulting in diffusive loss of hydrolysis products. An alternative 'selfish' uptake mechanism that minimises this loss has recently been found to be common in the ocean. We investigated how HMW organic matter addition affects these two processing mechanisms in surface and bottom waters at three stations in the North Atlantic Ocean. A pulse of HMW organic matter increased cell numbers, as well as the rate and spectrum of extracellular enzymatic activities at both depths. The effects on selfish uptake were more differentiated: in Gulf Stream surface waters and productive surface waters south of Newfoundland, selfish uptake of structurally simple polysaccharides increased upon HMW organic matter addition. The number of selfish bacteria taking up structurally complex polysaccharides, however, was largely unchanged. In contrast, in the oligotrophic North Atlantic gyre, despite high external hydrolysis rates, the number of selfish bacteria was unchanged, irrespective of polysaccharide structure. In deep bottom waters (> 4000 m), structurally complex substrates were processed only by selfish bacteria. Mechanisms of substrate processing-and the extent to which hydrolysis products are released to the external environment-depend on substrate structural complexity and the resident bacterial community.


Assuntos
Bactérias , Água do Mar , Água do Mar/microbiologia , Peso Molecular , Bactérias/genética , Bactérias/metabolismo , Oceano Atlântico , Polissacarídeos/metabolismo
3.
Environ Microbiol ; 24(5): 2333-2347, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35384240

RESUMO

Marine heterotrophic bacteria contribute considerably to global carbon cycling, in part by utilizing phytoplankton-derived polysaccharides. The patterns and rates of two different polysaccharide utilization modes - extracellular hydrolysis and selfish uptake - have previously been found to change during spring phytoplankton bloom events. Here we investigated seasonal changes in bacterial utilization of three polysaccharides, laminarin, xylan and chondroitin sulfate. Strong seasonal differences were apparent in mode and speed of polysaccharide utilization, as well as in bacterial community compositions. Compared to the winter month of February, during the spring bloom in May, polysaccharide utilization was detected earlier in the incubations and a higher portion of all bacteria took up laminarin selfishly. Highest polysaccharide utilization was measured in June and September, mediated by bacterial communities that were significantly different from spring assemblages. Extensive selfish laminarin uptake, for example, was detectible within a few hours in June, while extracellular hydrolysis of chondroitin was dominant in September. In addition to the well-known Bacteroidota and Gammaproteobacteria clades, the numerically minor verrucomicrobial clade Pedosphaeraceae could be identified as a rapid laminarin utilizer. In summary, polysaccharide utilization proved highly variable over the seasons, both in mode and speed, and also by the bacterial clades involved.


Assuntos
Eutrofização , Fitoplâncton , Bactérias/genética , Mar do Norte , Fitoplâncton/microbiologia , Polissacarídeos Bacterianos , Estações do Ano , Água do Mar/microbiologia
4.
Environ Microbiol ; 23(1): 448-463, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33201558

RESUMO

Microbial communities have important functions during spring phytoplankton blooms, regulating bloom dynamics and processing organic matter. Despite extensive research into such processes, an in-depth assessment of the fungal component is missing, especially for the smaller size fractions. We investigated the dynamics of unicellular mycoplankton during a spring phytoplankton bloom in the North Sea by 18S rRNA gene tag sequencing and a modified CARD-FISH protocol. Visualization and enumeration of dominant taxa revealed unique cell count patterns that varied considerably over short time scales. The Rozellomycota sensu lato (s.l.) reached a maximum of 105 cells L-1 , being comparable to freshwater counts. The abundance of Dikarya surpassed previous values by two orders of magnitude (105 cells L-1 ) and the corresponding biomass (maximum of 8.9 mg C m-3 ) was comparable to one reported for filamentous fungi with assigned ecological importance. Our results show that unicellular fungi are an abundant and, based on high cellular ribosome content and fast dynamics, active part of coastal microbial communities. The known ecology of the visualized taxa and the observed dynamics suggest the existence of different ecological niches that link primary and secondary food chains, highlighting the importance of unicellular fungi in food web structures and carbon transfer.


Assuntos
Biodiversidade , Fungos/isolamento & purificação , Fitoplâncton/crescimento & desenvolvimento , Água do Mar/microbiologia , Biomassa , Cadeia Alimentar , Água Doce/microbiologia , Fungos/classificação , Fungos/genética , Fungos/crescimento & desenvolvimento , Mar do Norte , RNA Ribossômico 18S/genética , Estações do Ano
5.
Environ Microbiol ; 22(5): 1884-1900, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32128969

RESUMO

Spring phytoplankton blooms in temperate environments contribute disproportionately to global marine productivity. Bloom-derived organic matter, much of it occurring as polysaccharides, fuels biogeochemical cycles driven by interacting autotrophic and heterotrophic communities. We tracked changes in the mode of polysaccharide utilization by heterotrophic bacteria during the course of a diatom-dominated bloom in the German Bight, North Sea. Polysaccharides can be taken up in a 'selfish' mode, where initial hydrolysis is coupled to transport into the periplasm, such that little to no low-molecular weight (LMW) products are externally released to the environment. Alternatively, polysaccharides hydrolyzed by cell-surface attached or free extracellular enzymes (external hydrolysis) yield LMW products available to the wider bacterioplankton community. In the early bloom phase, selfish activity was accompanied by low extracellular hydrolysis rates of a few polysaccharides. As the bloom progressed, selfish uptake increased markedly, and external hydrolysis rates increased, but only for a limited range of substrates. The late bloom phase was characterized by high external hydrolysis rates of a broad range of polysaccharides and reduced selfish uptake of polysaccharides, except for laminarin. Substrate utilization mode is related both to substrate structural complexity and to the bloom-stage dependent composition of the heterotrophic bacterial community.


Assuntos
Bactérias/metabolismo , Diatomáceas/metabolismo , Eutrofização/fisiologia , Fitoplâncton/metabolismo , Polissacarídeos/metabolismo , Organismos Aquáticos , Bactérias/genética , Diatomáceas/genética , Processos Heterotróficos/fisiologia , Mar do Norte , Fitoplâncton/genética , Fitoplâncton/microbiologia , Estações do Ano , Água do Mar/microbiologia
6.
Environ Microbiol ; 21(10): 3896-3908, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31299137

RESUMO

Sulphide-driven anoxygenic photosynthesis is an ancient microbial metabolism that contributes significantly to inorganic carbon fixation in stratified, sulphidic water bodies. Methods commonly applied to quantify inorganic carbon fixation by anoxygenic phototrophs, however, cannot resolve the contributions of distinct microbial populations to the overall process. We implemented a straightforward workflow, consisting of radioisotope labelling and flow cytometric cell sorting based on the distinct autofluorescence of bacterial photopigments, to discriminate and quantify contributions of co-occurring anoxygenic phototrophic populations to in situ inorganic carbon fixation in environmental samples. This allowed us to assign 89.3% ± 7.6% of daytime inorganic carbon fixation by anoxygenic phototrophs in Lake Rogoznica (Croatia) to an abundant chemocline-dwelling population of green sulphur bacteria (dominated by Chlorobium phaeobacteroides), whereas the co-occurring purple sulphur bacteria (Halochromatium sp.) contributed only 1.8% ± 1.4%. Furthermore, we obtained two metagenome assembled genomes of green sulphur bacteria and one of a purple sulphur bacterium which provides the first genomic insights into the genus Halochromatium, confirming its high metabolic flexibility and physiological potential for mixo- and heterotrophic growth.


Assuntos
Chlorobium/metabolismo , Chromatiaceae/metabolismo , Lagos/microbiologia , Sulfetos/metabolismo , Enxofre/metabolismo , Ciclo do Carbono , Chlorobium/isolamento & purificação , Chromatiaceae/isolamento & purificação , Croácia , Fotossíntese , Água do Mar/microbiologia
7.
Environ Microbiol ; 21(2): 682-701, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30585382

RESUMO

Metal-sulfides are wide-spread in marine benthic habitats. At deep-sea hydrothermal vents, they occur as massive sulfide chimneys formed by mineral precipitation upon mixing of reduced vent fluids with cold oxygenated sea water. Although microorganisms inhabiting actively venting chimneys and utilizing compounds supplied by the venting fluids are well studied, only little is known about microorganisms inhabiting inactive chimneys. In this study, we combined 16S rRNA gene-based community profiling of sulfide chimneys from the Manus Basin (SW Pacific) with radiometric dating, metagenome (n = 4) and metaproteome (n = 1) analyses. Our results shed light on potential lifestyles of yet poorly characterized bacterial clades colonizing inactive chimneys. These include sulfate-reducing Nitrospirae and sulfide-oxidizing Gammaproteobacteria dominating most of the inactive chimney communities. Our phylogenetic analysis attributed the gammaproteobacterial clades to the recently described Woeseiaceae family and the SSr-clade found in marine sediments around the world. Metaproteomic data identified these Gammaproteobacteria as autotrophic sulfide-oxidizers potentially facilitating metal-sulfide dissolution via extracellular electron transfer. Considering the wide distribution of these gammaproteobacterial clades in marine environments such as hydrothermal vents and sediments, microbially accelerated neutrophilic mineral oxidation might be a globally relevant process in benthic element cycling and a considerable energy source for carbon fixation in marine benthic habitats.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Fontes Hidrotermais/microbiologia , Metais/metabolismo , Sulfetos/metabolismo , Processos Autotróficos , Bactérias/classificação , Bactérias/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ciclo do Carbono , Ecossistema , Metagenoma , Metagenômica , Oxirredução , Filogenia , Proteômica
8.
Environ Microbiol ; 21(11): 4300-4315, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31444990

RESUMO

While the dynamics of microbial community assembly driven by environmental perturbations have been extensively studied, our understanding is far from complete, particularly for light-induced perturbations. Extremely halophilic communities thriving in coastal solar salterns are mainly influenced by two environmental factors-salt concentrations and high sunlight irradiation. By experimentally manipulating light intensity through the application of shading, we showed that light acts as a deterministic factor that ultimately drives the establishment of recurrent microbial communities under near-saturation salt concentrations. In particular, the stable and highly change-resistant communities that established under high-light intensities were dominated (>90% of metagenomic reads) by Haloquadratum spp. and Salinibacter spp. On the other hand, under 37-fold lower light intensity, different, less stable and change-resistant communities were established, mainly dominated by yet unclassified haloarchaea and relatively diverse photosynthetic microorganisms. These communities harboured, in general, much lower carotenoid pigment content than their high-irradiation counterparts. Both assemblage types appeared to be highly resilient, re-establishing when favourable conditions returned after perturbation (i.e. high-irradiation for the former communities and low-irradiation for the latter ones). Overall, our results revealed that stochastic processes were of limited significance to explain these patterns.


Assuntos
Luz , Microbiota/efeitos da radiação , Bactérias/genética , Bactérias/efeitos da radiação , Metagenoma , Fotossíntese , Salinidade , Processos Estocásticos
9.
Appl Environ Microbiol ; 85(14)2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31076426

RESUMO

The South Pacific Gyre (SPG) covers 10% of the ocean's surface and is often regarded as a marine biological desert. To gain an on-site overview of the remote, ultraoligotrophic microbial community of the SPG, we developed a novel onboard analysis pipeline, which combines next-generation sequencing with fluorescence in situ hybridization and automated cell enumeration. We tested the pipeline during the SO-245 "UltraPac" cruise from Chile to New Zealand and found that the overall microbial community of the SPG was highly similar to those of other oceanic gyres. The SPG was dominated by 20 major bacterial clades, including SAR11, SAR116, the AEGEAN-169 marine group, SAR86, Prochlorococcus, SAR324, SAR406, and SAR202. Most of the bacterial clades showed a strong vertical (20 m to 5,000 m), but only a weak longitudinal (80°W to 160°W), distribution pattern. Surprisingly, in the central gyre, Prochlorococcus, the dominant photosynthetic organism, had only low cellular abundances in the upper waters (20 to 80 m) and was more frequent around the 1% irradiance zone (100 to 150 m). Instead, the surface waters of the central gyre were dominated by the SAR11, SAR86, and SAR116 clades known to harbor light-driven proton pumps. The alphaproteobacterial AEGEAN-169 marine group was particularly abundant in the surface waters of the central gyre, indicating a potentially interesting adaptation to ultraoligotrophic waters and high solar irradiance. In the future, the newly developed community analysis pipeline will allow for on-site insights into a microbial community within 35 h of sampling, which will permit more targeted sampling efforts and hypothesis-driven research.IMPORTANCE The South Pacific Gyre, due to its vast size and remoteness, is one of the least-studied oceanic regions on earth. However, both remote sensing and in situ measurements indicated that the activity of its microbial community contributes significantly to global biogeochemical cycles. Presented here is an unparalleled investigation of the microbial community of the SPG from 20- to 5,000-m depths covering a geographic distance of ∼7,000 km. This insight was achieved through the development of a novel onboard analysis pipeline, which combines next-generation sequencing with fluorescence in situ hybridization and automated cell enumeration. The pipeline is well comparable to onshore systems based on the Illumina platforms and yields microbial community data in less than 35 h after sampling. Going forward, the ability to gain on-site knowledge of a remote microbial community will permit hypothesis-driven research, through the generation of novel scientific questions and subsequent additional targeted sampling efforts.


Assuntos
Bactérias/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Microbiota , Água do Mar/microbiologia , Bactérias/classificação , Oceano Pacífico
10.
Environ Microbiol ; 20(11): 4127-4140, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30246424

RESUMO

Marine microscopic algae carry out about half of the global carbon dioxide fixation into organic matter. They provide organic substrates for marine microbes such as members of the Bacteroidetes that degrade algal polysaccharides using carbohydrate-active enzymes (CAZymes). In Bacteroidetes genomes CAZyme encoding genes are mostly grouped in distinct regions termed polysaccharide utilization loci (PULs). While some studies have shown involvement of PULs in the degradation of algal polysaccharides, the specific substrates are for the most part still unknown. We investigated four marine Bacteroidetes isolated from the southern North Sea that harbour putative mannan-specific PULs. These PULs are similarly organized as PULs in human gut Bacteroides that digest α- and ß-mannans from yeasts and plants respectively. Using proteomics and defined growth experiments with polysaccharides as sole carbon sources we could show that the investigated marine Bacteroidetes express the predicted functional proteins required for α- and ß-mannan degradation. Our data suggest that algal mannans play an as yet unknown important role in the marine carbon cycle, and that biochemical principles established for gut or terrestrial microbes also apply to marine bacteria, even though their PULs are evolutionarily distant.


Assuntos
Bacteroidetes/metabolismo , Mananas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteroidetes/enzimologia , Bacteroidetes/genética , Metabolismo dos Carboidratos , Ciclo do Carbono , Humanos , Mananas/química , Mar do Norte , Proteômica
11.
Nature ; 488(7409): 91-5, 2012 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-22859207

RESUMO

The plant root defines the interface between a multicellular eukaryote and soil, one of the richest microbial ecosystems on Earth. Notably, soil bacteria are able to multiply inside roots as benign endophytes and modulate plant growth and development, with implications ranging from enhanced crop productivity to phytoremediation. Endophytic colonization represents an apparent paradox of plant innate immunity because plant cells can detect an array of microbe-associated molecular patterns (also known as MAMPs) to initiate immune responses to terminate microbial multiplication. Several studies attempted to describe the structure of bacterial root endophytes; however, different sampling protocols and low-resolution profiling methods make it difficult to infer general principles. Here we describe methodology to characterize and compare soil- and root-inhabiting bacterial communities, which reveals not only a function for metabolically active plant cells but also for inert cell-wall features in the selection of soil bacteria for host colonization. We show that the roots of Arabidopsis thaliana, grown in different natural soils under controlled environmental conditions, are preferentially colonized by Proteobacteria, Bacteroidetes and Actinobacteria, and each bacterial phylum is represented by a dominating class or family. Soil type defines the composition of root-inhabiting bacterial communities and host genotype determines their ribotype profiles to a limited extent. The identification of soil-type-specific members within the root-inhabiting assemblies supports our conclusion that these represent soil-derived root endophytes. Surprisingly, plant cell-wall features of other tested plant species seem to provide a sufficient cue for the assembly of approximately 40% of the Arabidopsis bacterial root-inhabiting microbiota, with a bias for Betaproteobacteria. Thus, this root sub-community may not be Arabidopsis-specific but saprophytic bacteria that would naturally be found on any plant root or plant debris in the tested soils. By contrast, colonization of Arabidopsis roots by members of the Actinobacteria depends on other cues from metabolically active host cells.


Assuntos
Arabidopsis/microbiologia , Bactérias/isolamento & purificação , Metagenoma , Raízes de Plantas/microbiologia , Actinobacteria/isolamento & purificação , Arabidopsis/classificação , Bactérias/classificação , Bactérias/genética , Bactérias/ultraestrutura , Bacteroidetes/isolamento & purificação , Biodiversidade , Parede Celular/metabolismo , Parede Celular/microbiologia , Ecossistema , Endófitos/classificação , Endófitos/genética , Endófitos/crescimento & desenvolvimento , Endófitos/isolamento & purificação , Especificidade de Hospedeiro , Hibridização in Situ Fluorescente , Células Vegetais/microbiologia , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Rizosfera , Ribotipagem , Solo/análise , Solo/química , Microbiologia do Solo
12.
Environ Microbiol ; 19(1): 70-82, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27348074

RESUMO

Although fluorescence in situ hybridization (FISH) with specific ribosomal RNA (rRNA)-targeted oligonucleotides is a standard method to detect and identify microorganisms, the specific detection of genes in bacteria and archaea, for example by using geneFISH, requires complicated and lengthy (> 30 h) procedures. Here we report a much improved protocol, direct-geneFISH, which allows specific gene and rRNA detection within less than 6 h. For direct-geneFISH, catalyzed amplification reporter deposition (CARD) steps are removed and fluorochrome-labelled polynucleotide gene probes and rRNA-targeted oligonucleotide probes are hybridized simultaneously. The protocol allows quantification of gene copy numbers per cell and the signal of the directly labelled probes enables a subcellular localization of the rRNA and target gene. The detection efficiencies of direct-geneFISH were first evaluated on Escherichia coli carrying the target gene on a copy-control vector. We could show that gene copy numbers correlated to the geneFISH signal within the cells. The new protocol was then applied for the detection of the sulfate thiolhydrolase (soxB) genes in cells of the gammaproteobacterial clade SUP05 in Lake Rogoznica, Croatia. Cell and gene detection efficiencies by direct-geneFISH were statistically identical to those obtained with the original geneFISH, demonstrating the suitability of the simpler and faster protocol for environmental samples.


Assuntos
Escherichia coli/genética , Gammaproteobacteria/genética , Dosagem de Genes/genética , Hibridização in Situ Fluorescente/métodos , Sondas de Oligonucleotídeos/genética , RNA Ribossômico/genética , Croácia , Lagos/microbiologia
13.
Environ Microbiol ; 19(6): 2320-2333, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28276126

RESUMO

Mobile genomic islands distribute functional traits between microbes and habitats, yet it remains unclear how their proteins adapt to new environments. Here we used a comparative phylogenomic and proteomic approach to show that the marine bacterium Pseudoalteromonas haloplanktis ANT/505 acquired a genomic island with a functional pathway for pectin catabolism. Bioinformatics and biochemical experiments revealed that this pathway encodes a series of carbohydrate-active enzymes including two multi-modular pectate lyases, PelA and PelB. PelA is a large enzyme with a polysaccharide lyase family 1 (PL1) domain and a carbohydrate esterase family 8 domain, and PelB contains a PL1 domain and two carbohydrate-binding domains of family 13. Comparative phylogenomic analyses indicate that the pathway was most likely acquired from terrestrial microbes, yet we observed multi-modular orthologues only in marine bacteria. Proteomic experiments showed that P. haloplanktis ANT/505 secretes both pectate lyases into the environment in the presence of pectin. These multi-modular enzymes may therefore represent a marine innovation that enhances physical interaction with pectins to reduce loss of substrate and enzymes by diffusion. Our results revealed that marine bacteria can catabolize pectin, and highlight enzyme fusion as a potential adaptation that may facilitate microbial consumption of polymeric substrates in aquatic environments.


Assuntos
Adaptação Fisiológica/genética , Gammaproteobacteria/metabolismo , Pectinas/metabolismo , Polissacarídeo-Liases/genética , Sequência de Aminoácidos , Gammaproteobacteria/genética , Transferência Genética Horizontal/genética , Sequências Repetitivas Dispersas/genética , Proteômica
14.
Environ Microbiol ; 19(3): 1209-1221, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28000419

RESUMO

Gammaproteobacterial Reinekea spp. were detected during North Sea spring algae blooms in the years 2009-2012, with relative abundances of up to 16% in the bacterioplankton. Here, we explore the ecophysiology of 'R. forsetii' strain Hel1_31_D35 that was isolated during the 2010 spring bloom using (i) its manually annotated, high-quality closed genome, (ii) re-analysis of in situ data from the 2009-2012 blooms and (iii) physiological tests. High resolution analysis of 16S rRNA gene sequences suggested that 'R. forsetii' dominated Reinekea populations during these blooms. This was corroborated by retrieval of almost complete Hel1_31_D35 genomes from 2009 and 2010 bacterioplankton metagenomes. Strain Hel1_31_D35 can use numerous low-molecular weight substrates including diverse sugar monomers, and few but relevant algal polysaccharides such as mannan, α-glucans, and likely bacterial peptidoglycan. It oxidizes thiosulfate to sulfate, and ferments under anoxic conditions. The strain can attach to algae and thrives at low phosphate concentrations as they occur during blooms. Its genome encodes RTX toxin and secretion proteins, and in cultivation experiments Hel1_31_D35 crude cell extracts inhibited growth of a North Sea Polaribacter strain. Our data suggest that the combination of these traits make strain Hel1_31_D35 a versatile opportunist that is particularly competitive during spring phytoplankton blooms.


Assuntos
Eutrofização , Gammaproteobacteria/genética , Água do Mar/microbiologia , Gammaproteobacteria/crescimento & desenvolvimento , Gammaproteobacteria/isolamento & purificação , Gammaproteobacteria/metabolismo , Genômica , Glucanos/metabolismo , Mar do Norte , Fitoplâncton/classificação , Fitoplâncton/genética , Fitoplâncton/crescimento & desenvolvimento , Fitoplâncton/isolamento & purificação , Polissacarídeos/metabolismo , RNA Ribossômico 16S/genética , Estações do Ano
15.
Environ Microbiol ; 19(8): 3039-3058, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28419691

RESUMO

Cotylorhiza tuberculata is an important scyphozoan jellyfish producing population blooms in the Mediterranean probably due to pelagic ecosystem's decay. Its gastric cavity can serve as a simple model of microbial-animal digestive associations, yet poorly characterized. Using state-of-the-art metagenomic population binning and catalyzed reporter deposition fluorescence in situ hybridization (CARD-FISH), we show that only four novel clonal phylotypes were consistently associated with multiple jellyfish adults. Two affiliated close to Spiroplasma and Mycoplasma genera, one to chlamydial 'Candidatus Syngnamydia', and one to bacteroidetal Tenacibaculum, and were at least one order of magnitude more abundant than any other bacteria detected. Metabolic modelling predicted an aerobic heterotrophic lifestyle for the chlamydia, which were found intracellularly in Onychodromopsis-like ciliates. The Spiroplasma-like organism was predicted to be an anaerobic fermenter associated to some jellyfish cells, whereas the Tenacibaculum-like as free-living aerobic heterotroph, densely colonizing the mesogleal axis inside the gastric filaments. The association between the jellyfish and its reduced microbiome was close and temporally stable, and possibly related to food digestion and protection from pathogens. Based on the genomic and microscopic data, we propose three candidate taxa: 'Candidatus Syngnamydia medusae', 'Candidatus Medusoplasma mediterranei' and 'Candidatus Tenacibaculum medusae'.


Assuntos
Chlamydia/classificação , Mycoplasma/classificação , Cifozoários/microbiologia , Spiroplasma/classificação , Tenacibaculum/classificação , Animais , Biodiversidade , Chlamydia/genética , Chlamydia/isolamento & purificação , Feminino , Microbioma Gastrointestinal , Hibridização in Situ Fluorescente , Masculino , Mar Mediterrâneo , Mycoplasma/genética , Mycoplasma/isolamento & purificação , RNA Ribossômico 16S/genética , Spiroplasma/genética , Spiroplasma/isolamento & purificação , Tenacibaculum/genética , Tenacibaculum/isolamento & purificação
16.
PLoS Biol ; 12(8): e1001920, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25093819

RESUMO

Microbes hold the key to life. They hold the secrets to our past (as the descendants of the earliest forms of life) and the prospects for our future (as we mine their genes for solutions to some of the planet's most pressing problems, from global warming to antibiotic resistance). However, the piecemeal approach that has defined efforts to study microbial genetic diversity for over 20 years and in over 30,000 genome projects risks squandering that promise. These efforts have covered less than 20% of the diversity of the cultured archaeal and bacterial species, which represent just 15% of the overall known prokaryotic diversity. Here we call for the funding of a systematic effort to produce a comprehensive genomic catalog of all cultured Bacteria and Archaea by sequencing, where available, the type strain of each species with a validly published name (currently∼11,000). This effort will provide an unprecedented level of coverage of our planet's genetic diversity, allow for the large-scale discovery of novel genes and functions, and lead to an improved understanding of microbial evolution and function in the environment.


Assuntos
Genoma Arqueal/genética , Genoma Bacteriano/genética , Genômica , Análise de Sequência de DNA , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Bases de Dados Genéticas , Filogenia
17.
Int J Syst Evol Microbiol ; 67(3): 697-703, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27902319

RESUMO

Strain KT0803T was isolated from coastal eutrophic surface waters of Helgoland Roads near the island of Helgoland, North Sea, Germany. The taxonomic position of the strain, previously known as 'Gramella forsetii' KT0803, was investigated by using a polyphasic approach. The strain was Gram-stain-negative, chemo-organotrophic, heterotrophic, strictly aerobic, oxidase- and catalase-positive, rod-shaped, motile by gliding and had orange-yellow carotenoid pigments, but was negative for flexirubin-type pigments. It grew optimally at 22-25 °C, at pH 7.5 and at a salinity between 2-3 %. Strain KT0803T hydrolysed the polysaccharides laminarin, alginate, pachyman and starch. The respiratory quinone was MK-6. Polar lipids comprised phosphatidylethanolamine, six unidentified lipids and two unidentified aminolipids. The predominant fatty acids were iso-C15 : 0, iso-C17 : 0 3-OH, C16 : 1ω7c and iso-C17 : 1ω7c, with smaller amounts of iso-C15 : 0 2-OH, C15 : 0, anteiso-C15 : 0 and C17 : 1ω6c. The G+C content of the genomic DNA was 36.6 mol%. The 16S rRNA gene sequence identities were 98.6 % with Gramella echinicola DSM 19838T, 98.3 % with Gramella gaetbulicola DSM 23082T, 98.1 % with Gramella aestuariivivens BG-MY13T and Gramella aquimixticola HJM-19T, 98.0 % with Gramella lutea YJ019T, 97.9 % with Gramella portivictoriae DSM 23547T and 96.9 % with Gramella marina KMM 6048T. The DNA-DNA relatedness values were <35 % between strain KT0803T and type strains with >98.2 % 16S rRNA gene sequence identity. Based on the chemotaxonomic, phenotypic and genomic characteristics, strain KT0803T has been assigned to the genus Gramella, as Gramella forsetii sp. nov. The type strain is KT0803T (=DSM 17595T=CGMCC 1.15422T). An emended description of Gramella gaetbulicolaCho et al. 2011 is also proposed.


Assuntos
Flavobacteriaceae/classificação , Filogenia , Água do Mar/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/genética , Flavobacteriaceae/isolamento & purificação , Alemanha , Mar do Norte , Hibridização de Ácido Nucleico , Fosfatidiletanolaminas/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
18.
Nature ; 476(7359): 176-80, 2011 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-21833083

RESUMO

The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ hybridization, immunohistochemistry, shipboard incubations and in situ mass spectrometry, we show here that the symbionts of the hydrothermal vent mussel Bathymodiolus from the Mid-Atlantic Ridge use hydrogen to power primary production. In addition, we show that the symbionts of Bathymodiolus mussels from Pacific vents have hupL, the key gene for hydrogen oxidation. Furthermore, the symbionts of other vent animals such as the tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata also have hupL. We propose that the ability to use hydrogen as an energy source is widespread in hydrothermal vent symbioses, particularly at sites where hydrogen is abundant.


Assuntos
Bivalves/microbiologia , Ecossistema , Metabolismo Energético , Fontes Termais/química , Hidrogênio/metabolismo , Simbiose/fisiologia , Animais , Oceano Atlântico , Bivalves/efeitos dos fármacos , Bivalves/metabolismo , Relação Dose-Resposta a Droga , Sedimentos Geológicos/química , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Brânquias/microbiologia , Fontes Termais/microbiologia , Hidrogênio/análise , Hidrogênio/farmacologia , Hidrogenase/genética , Hidrogenase/metabolismo , Dados de Sequência Molecular , Oxirredução , Pressão Parcial , Água do Mar/química , Água do Mar/microbiologia , Sulfetos/metabolismo , Enxofre/metabolismo , Simbiose/efeitos dos fármacos , Simbiose/genética
19.
Environ Microbiol ; 18(8): 2405-17, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26530333

RESUMO

The Chlamydiae are a phylum of obligate intracellular bacteria comprising important human and animal pathogens, yet their occurrence in the environment, their phylogenetic diversity and their host range has been largely underestimated. We investigated the seasonality of environmental chlamydiae in a Tyrrhenian coastal lake. By catalysed reporter deposition fluorescence in situ hybridization, we quantified the small planktonic cells and detected a peak in the abundance of environmental chlamydiae in early autumn with up to 5.9 × 10(4) cells ml(-1) . Super-resolution microscopy improved the visualization and quantification of these bacteria and enabled the detection of pleomorphic chlamydial cells in their protist host directly in an environmental sample. To isolate environmental chlamydiae together with their host, we applied a high-throughput limited dilution approach and successfully recovered a Vexillifera sp., strain harbouring chlamydiae (93% 16S rRNA sequence identity to Simkania negevensis), tentatively named 'Candidatus Neptunochlamydia vexilliferae'. Transmission electron microscopy in combination with fluorescence in situ hybridization was used to prove the intracellular location of these bacteria representing the first strain of marine chlamydiae stably maintained alongside with their host in a laboratory culture. Taken together, this study contributes to a better understanding of the distribution and diversity of environmental chlamydiae in previously neglected marine environments.


Assuntos
Chlamydiales/isolamento & purificação , Lagos/microbiologia , Chlamydiales/classificação , Chlamydiales/genética , Hibridização in Situ Fluorescente , Ilhas , Filogenia , RNA Ribossômico 16S/genética , Estações do Ano
20.
Environ Microbiol ; 18(12): 4348-4368, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27001712

RESUMO

Deep-sea hydrothermal vents are highly dynamic habitats characterized by steep temperature and chemical gradients. The oxidation of reduced compounds dissolved in the venting fluids fuels primary production providing the basis for extensive life. Until recently studies of microbial vent communities have focused primarily on chemolithoautotrophic organisms. In our study, we targeted the change of microbial community compositions along mixing gradients, focusing on distribution and capabilities of heterotrophic microorganisms. Samples were retrieved from different venting areas within the Menez Gwen hydrothermal field, taken along mixing gradients, including diffuse fluid discharge points, their immediate surroundings and the buoyant parts of hydrothermal plumes. High throughput 16S rRNA gene amplicon sequencing, fluorescence in situ hybridization, and targeted metagenome analysis were combined with geochemical analyses. Close to diffuse venting orifices dominated by chemolithoautotrophic Epsilonproteobacteria, in areas where environmental conditions still supported chemolithoautotrophic processes, we detected microbial communities enriched for versatile heterotrophic Alpha- and Gammaproteobacteria. The potential for alkane degradation could be shown for several genera and yet uncultured clades. We propose that hotspots of chemolithoautotrophic life support a 'belt' of heterotrophic bacteria significantly different from the dominating oligotrophic microbiota of the deep sea.


Assuntos
Fontes Hidrotermais/microbiologia , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , DNA Bacteriano/genética , Ecossistema , Processos Heterotróficos , Hibridização in Situ Fluorescente , Metagenoma , Proteobactérias/classificação , Proteobactérias/genética , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa