Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(45): e2210645119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322758

RESUMO

Thyroid hormones (THs) regulate gene expression by binding to nuclear TH receptors (TRs) in the cell. THs are indispensable for brain development. However, we have little knowledge about how congenital hypothyroidism in neurons affects functions of the central nervous system in adulthood. Here, we report specific TH effects on functional development of the cerebellum by using transgenic mice overexpressing a dominant-negative TR (Mf-1) specifically in cerebellar Purkinje cells (PCs). Adult Mf-1 mice displayed impairments in motor coordination and motor learning. Surprisingly, long-term depression (LTD)-inductive stimulation caused long-term potentiation (LTP) at parallel fiber (PF)-PC synapses in adult Mf-1 mice, although there was no abnormality in morphology or basal properties of PF-PC synapses. The LTP phenotype was turned to LTD in Mf-1 mice when the inductive stimulation was applied in an extracellular high-Ca2+ condition. Confocal calcium imaging revealed that dendritic Ca2+ elevation evoked by LTD-inductive stimulation is significantly reduced in Mf-1 PCs but not by PC depolarization only. Single PC messenger RNA quantitative analysis showed reduced expression of SERCA2 and IP3 receptor type 1 in Mf-1 PCs, which are essential for mGluR1-mediated internal calcium release from endoplasmic reticulum in cerebellar PCs. These abnormal changes were not observed in adult-onset PC-specific TH deficiency mice created by adeno-associated virus vectors. Thus, we propose the importance of TH action during neural development in establishing proper cerebellar function in adulthood, independent of its morphology. The present study gives insight into the cellular and molecular mechanisms underlying congenital hypothyroidism-induced dysfunctions of central nervous system and cerebellum.


Assuntos
Hipotireoidismo Congênito , Células de Purkinje , Camundongos , Animais , Células de Purkinje/metabolismo , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/fisiologia , Cálcio/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Depressão , Hipotireoidismo Congênito/metabolismo , Sinapses/metabolismo , Cerebelo/fisiologia
2.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731947

RESUMO

Estrogen plays an important role in osteoporosis prevention. We herein report the possible novel signaling pathway of 17ß-estradiol (E2) in the matrix mineralization of MC3T3-E1, an osteoblast-like cell line. In the culture media-containing stripped serum, in which small lipophilic molecules such as steroid hormones including E2 were depleted, matrix mineralization was significantly reduced. However, the E2 treatment induced this. The E2 effects were suppressed by ICI182,780, the estrogen receptor (ER)α, and the ERß antagonist, as well as their mRNA knockdown, whereas Raloxifene, an inhibitor of estrogen-induced transcription, and G15, a G-protein-coupled estrogen receptor (GPER) 1 inhibitor, had little or no effect. Furthermore, the E2-activated matrix mineralization was disrupted by PMA, a PKC activator, and SB202190, a p38 MAPK inhibitor, but not by wortmannin, a PI3K inhibitor. Matrix mineralization was also induced by the culture media from the E2-stimulated cell culture. This effect was hindered by PMA or heat treatment, but not by SB202190. These results indicate that E2 activates the p38 MAPK pathway via ERs independently from actions in the nucleus. Such activation may cause the secretion of certain signaling molecule(s), which inhibit the PKC pathway. Our study provides a novel pathway of E2 action that could be a therapeutic target to activate matrix mineralization under various diseases, including osteoporosis.


Assuntos
Estradiol , Osteoblastos , Transdução de Sinais , Animais , Camundongos , Estradiol/farmacologia , Osteoblastos/metabolismo , Osteoblastos/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Linhagem Celular , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Estrogênios/farmacologia , Estrogênios/metabolismo , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética
3.
Eur Spine J ; 32(10): 3403-3412, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37555955

RESUMO

PURPOSE: Kyphosis involves spines curving excessively backward beyond their physiological curvature. Although the normal structure of the spinal vertebrae is extremely important for maintaining posture and the normal function of the thoracic and abdominal organs, our knowledge concerning the pathogenesis of the disease is insufficient. We herein report that the downregulation of the calcium signaling pathway is involved in the pathogenesis of congenital kyphosis. METHODS: The third to fifth lumbar spine segments, the kyphotic region of Ishibashi (IS) rats, which are used as a model of congenital kyphoscoliosis, were collected. A DNA microarray, quantitative PCR, Western blotting, and immunohistochemistry were used to measure the expression of genes and proteins related to intracellular calcium signaling. RESULTS: We found that the expression of calcium-sensing receptor (CaSR) and transient receptor potential vanilloid 1 (Trpv1)-two receptors involved in the calcium signaling-was decreased in the lumbar spine of IS rats. We also observed that the number of CaSR-immunoreactive and Trpv1-immunoreactive cells in the lumbar spine of IS rats was lower than in wild-type rats. Furthermore, the expression of intracellular molecules downstream of these receptors, such as phosphorylated protein kinase C, c-Jun N-terminal kinase, and neural EGFL-like 1, was also reduced. In fact, the calcium content in the lumbar spine of IS rats was significantly lower than that in wild-type rats. CONCLUSION: These results indicate that adequate calcium signaling is extremely important for the regulation of normal bone formation and may also be a key factor for understanding the pathogenesis of congenital kyphosis.


Assuntos
Cifose , Escoliose , Ratos , Animais , Cálcio , Cifose/patologia , Vértebras Lombares/patologia , Escoliose/genética , Postura/fisiologia , Vértebras Torácicas/patologia
4.
Int J Mol Sci ; 24(10)2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37240356

RESUMO

The nuclear estrogen receptor (ER) and G-protein-coupled ER (GPER1) play a crucial role during brain development and are involved in dendrite and spine growth as well as synapse formation. Soybean isoflavones, such as genistein, daidzein, and S-equol, a daidzein metabolite, exert their action through ER and GPER1. However, the mechanisms of action of isoflavones on brain development, particularly during dendritogenesis and neuritogenesis, have not yet been extensively studied. We evaluated the effects of isoflavones using mouse primary cerebellar culture, astrocyte-enriched culture, Neuro-2A clonal cells, and co-culture with neurons and astrocytes. Soybean isoflavone-augmented estradiol mediated dendrite arborization in Purkinje cells. Such augmentation was suppressed by co-exposure with ICI 182,780, an antagonist for ERs, or G15, a selective GPER1 antagonist. The knockdown of nuclear ERs or GPER1 also significantly reduced the arborization of dendrites. Particularly, the knockdown of ERα showed the greatest effect. To further examine the specific molecular mechanism, we used Neuro-2A clonal cells. Isoflavones also induced neurite outgrowth of Neuro-2A cells. The knockdown of ERα most strongly reduced isoflavone-induced neurite outgrowth compared with ERß or GPER1 knockdown. The knockdown of ERα also reduced the mRNA levels of ER-responsive genes (i.e., Bdnf, Camk2b, Rbfox3, Tubb3, Syn1, Dlg4, and Syp). Furthermore, isoflavones increased ERα levels, but not ERß or GPER1 levels, in Neuro-2A cells. The co-culture study of Neuro-2A cells and astrocytes also showed an increase in isoflavone-induced neurite growth, and co-exposure with ICI 182,780 or G15 significantly reduced the effects. In addition, isoflavones increased astrocyte proliferation via ER and GPER1. These results indicate that ERα plays an essential role in isoflavone-induced neuritogenesis. However, GPER1 signaling is also necessary for astrocyte proliferation and astrocyte-neuron communication, which may lead to isoflavone-induced neuritogenesis.


Assuntos
Receptor alfa de Estrogênio , Isoflavonas , Animais , Camundongos , Receptor alfa de Estrogênio/genética , Fulvestranto , Isoflavonas/farmacologia , Genisteína/farmacologia , Receptores de Estrogênio/genética , Receptores de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Estradiol/farmacologia , Estrogênios
5.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37628946

RESUMO

Perfluorooctane sulfonate (PFOS) has been used in a wide variety of industrial and commercial products. The adverse effects of PFOS on the developing brain are becoming of a great concern. However, the molecular mechanisms of PFOS on brain development have not yet been clarified. We investigated the effect of early-life exposure to PFOS on brain development and the mechanism involved. We investigated the change in thyroid hormone (TH)-induced dendrite arborization of Purkinje cells in the primary culture of newborn rat cerebellum. We further examined the mechanism of PFOS on TH signaling by reporter gene assay, quantitative RT-PCR, and type 2 iodothyronine deiodinase (D2) assay. As low as 10-7 M PFOS suppressed thyroxine (T4)-, but not triiodothyronine (T3)-induced dendrite arborization of Purkinje cells. Reporter gene assay showed that PFOS did not affect TRα1- and TRß1-mediated transcription in CV-1 cells. RT-PCR showed that PFOS suppressed D2 mRNA expression in the absence of T4 in primary cerebellar cells. D2 activity was also suppressed by PFOS in C6 glioma-derived cells. These results indicate that early-life exposure of PFOS disrupts TH-mediated cerebellar development possibly through the disruption of D2 activity and/or mRNA expression, which may cause cerebellar dysfunction.


Assuntos
Cerebelo , Iodeto Peroxidase , Animais , Ratos , Iodeto Peroxidase/genética , Células de Purkinje , RNA Mensageiro
6.
J Neurosci Res ; 100(2): 506-521, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34935172

RESUMO

Thyroid hormones play an important role in the central and peripheral nervous system functions. Approximately 50% of adult-onset hypothyroid patients have sensory symptoms including pain, possibly caused by peripheral neuropathy. However, the mechanism causing the pain has not been clarified. We generated an adult-onset hypothyroid model animal by administering 50 ppm propylthiouracil (PTU) for 5 weeks to male mice. Female mice were not tested in this study. Mechanical hypersensitivity, determined by the von Frey hair test, was observed during the PTU exposure and recovered after the exposure termination. The sciatic nerve compound action potential was also analyzed. Under single-pulse stimulation, no significant change in the threshold and conduction velocity was observed in the PTU-administered group. On the other hand, under train-pulse stimulation, the latency delay in the Aδ-fiber component was less in the PTU-administered group in Week 4 of PTU exposure, indicating relative hyperexcitability. Fluticasone, which is the anti-inflammatory agent with an ability to activate the voltage-gated potassium channel subfamily A (Kv1), restored the decrease in the latency change ratio by PTU exposure under the train-pulse stimulation supporting our hypothesis that Kv1 may be involved in the conductivity change. Kv1.1 protein level decreased significantly in the sciatic nerve of the PTU-administered group. These results indicate that adult-onset hypothyroidism causes mechanical hypersensitivity owing to hyperexcitability of the peripheral nerve and that reduction of Kv1.1 level may be involved in such alteration.


Assuntos
Hipotireoidismo , Canal de Potássio Kv1.1 , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Potenciais de Ação , Animais , Regulação para Baixo , Feminino , Humanos , Hipotireoidismo/induzido quimicamente , Hipotireoidismo/complicações , Masculino , Camundongos , Nervo Isquiático
7.
Dev Psychobiol ; 64(3): e22264, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35312052

RESUMO

Elucidating the mechanisms underlying nurturing and neglect behaviors is meaningful but challenging. Recently, we found that CIN85-deficient mice had reduced pituitary hormone prolactin secretion during late pregnancy, and their pups later showed an inhibited nurturing behavior. To examine whether this phenomenon could be reproduced in normal mice and not just CIN85-deficient mice, we investigated the nurturing behavior of offspring born to mothers whose blood prolactin levels had been reduced by bromocriptine administration during late pregnancy. First, to determine when bromocriptine treatment should be started, we investigated the detailed changes in blood prolactin levels in late pregnancy in mice, resulting in the identification of the prepartum prolactin surge. Furthermore, prolactin receptors in the fetal hypothalamus were expressed to the same extent as in the adult hypothalamus. Treatment with bromocriptine decreased the plasma concentrations of prolactin to the basal range throughout late pregnancy. However, against expectations, the proportion of the resultant pups exhibiting nurturing behaviors as adults was as high as that in the mice without bromocriptine treatment. In conclusion, the elimination of prolactin secretion during late pregnancy alone does not induce neglect-like behavior in offspring, suggesting that CIN85-deficient mice appear to involve another factor due to CIN85 deficiency besides prolactin deficiency.


Assuntos
Prolactina , Animais , Bromocriptina/farmacologia , Feminino , Humanos , Comportamento Materno , Camundongos , Mães , Gravidez , Prolactina/farmacologia
8.
Int J Mol Sci ; 23(14)2022 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-35887216

RESUMO

Perinatal hypothyroidism impairs cerebellar organogenesis and results in motor coordination defects. The thyroid hormone receptor binds to corepressor complexes containing histone deacetylase (HDAC) 3 in the absence of ligands and acts as a transcriptional repressor. Although histone acetylation status is strongly correlated with transcriptional regulation, its role in cerebellar development remains largely unknown. We aimed to study whether the cerebellar developmental defects induced by perinatal hypothyroidism can be rescued by treatment with a specific HDAC3 inhibitor, RGFP966. Motor coordination was analyzed using three behavioral tests. The cerebella were subjected to RT-qPCR and chromatin immunoprecipitation assays for acetylated histone H3. The treatment with RGFP966 partially reversed the cerebellar morphological defects in perinatal hypothyroid mice. These findings were associated with the alleviation of motor coordination defects in these mice. In addition, the RGFP966 administration increased the mRNA levels of cerebellar thyroid hormone-responsive genes. These increases were accompanied by augmented histone acetylation status at these gene loci. These findings indicate that HDAC3 plays an important role in the cerebellar developmental defects induced by perinatal hypothyroidism. The HDAC3 inhibitor might serve as a novel therapeutic agent for hypothyroidism-induced cerebellar defects by acetylating histone tails and stimulating transcription at thyroid hormone-responsive gene loci.


Assuntos
Inibidores de Histona Desacetilases , Hipotireoidismo , Acetilação , Animais , Feminino , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases , Histonas/metabolismo , Hipotireoidismo/tratamento farmacológico , Hipotireoidismo/genética , Hipotireoidismo/metabolismo , Camundongos , Gravidez , Hormônios Tireóideos/metabolismo
9.
Hepatology ; 72(2): 742-752, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32343421

RESUMO

Thyroid hormone (TH) plays a critical role in maintaining metabolic homeostasis throughout life. It is well known that the liver and thyroid are intimately linked, with TH playing important roles in de novo lipogenesis, beta-oxidation (fatty acid oxidation), cholesterol metabolism, and carbohydrate metabolism. Indeed, patients with hypothyroidism have abnormal lipid panels with higher levels of low-density lipoprotein levels, triglycerides (triacylglycerol; TAG), and apolipoprotein B levels. Even in euthyroid patients, lower serum-free thyroxine levels are associated with higher total cholesterol levels, LDL, and TAG levels. In addition to abnormal serum lipids, the risk of nonalcoholic fatty liver disease (NAFLD) increases with lower free thyroxine levels. As free thyroxine rises, the risk of NAFLD is reduced. This has led to numerous animal studies and clinical trials investigating TH analogs and TH receptor agonists as potential therapies for NAFLD and hyperlipidemia. Thus, TH plays an important role in maintaining hepatic homeostasis, and this continues to be an important area of study. A review of TH action and TH actions on the liver will be presented here.


Assuntos
Fígado/metabolismo , Hormônios Tireóideos/fisiologia , Animais , Colesterol/metabolismo , Humanos , Transdução de Sinais
10.
Proc Natl Acad Sci U S A ; 114(49): 13042-13047, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29158391

RESUMO

Although maternal nurturing behavior is extremely important for the preservation of a species, our knowledge of the biological underpinnings of these behaviors is insufficient. Here we show that the degree of a mother's nurturing behavior is regulated by factors present during her own fetal development. We found that Cin85-deficient (Cin85-/-) mother mice had reduced pituitary hormone prolactin (PRL) secretion as a result of excessive dopamine signaling in the brain. Their offspring matured normally and produced their own pups; however, nurturing behaviors such as pup retrieval and nursing were strongly inhibited. Surprisingly, when WT embryos were transplanted into the fallopian tubes of Cin85-/- mice, they also exhibited inhibited nurturing behavior as adults. Conversely, when Cin85-/- embryos were transplanted into the fallopian tubes of WT mice, the resultant pups exhibited normal nurturing behaviors as adults. When PRL was administered to Cin85-/- mice during late pregnancy, a higher proportion of the resultant pups exhibited nurturing behaviors as adults. This correlates with our findings that neural circuitry associated with nurturing behaviors was less active in pups born to Cin85-/- mothers, but PRL administration to mothers restored neural activity to normal levels. These results suggest that the prenatal period is extremely important in determining the expression of nurturing behaviors in the subsequent generation, and that maternal PRL is one of the critical factors for expression. In conclusion, perinatally secreted maternal PRL affects the expression of nurturing behaviors not only in a mother, but also in her pups when they have reached adulthood.


Assuntos
Encéfalo/metabolismo , Dopamina/metabolismo , Comportamento Materno , Proteínas de Neoplasias/genética , Proteínas do Tecido Nervoso/genética , Efeitos Tardios da Exposição Pré-Natal/genética , Prolactina/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Animais Recém-Nascidos , Comportamento Animal , Encéfalo/fisiopatologia , Transferência Embrionária , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Knockout , Mães , Proteínas de Neoplasias/deficiência , Proteínas do Tecido Nervoso/deficiência , Gravidez , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Prolactina/metabolismo , Maturidade Sexual/fisiologia , Transdução de Sinais
11.
Pediatr Int ; 61(5): 495-503, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30895654

RESUMO

BACKGROUND: The perinatal period is associated with a high risk of infant anemia. The aim of the present study was to determine the prevalence of infant and maternal anemia during the late lactation period and the risk factors for anemia in Japan. METHODS: This retrospective cohort study was based on data from health checkups of healthy infants at 6-7 and 9-10 months of age and their mothers who visited Akitsu Children's Clinic between September 2013 and August 2015. Complete blood count data from infant blood samples obtained at 6-7 months and 9-10 months and from maternal blood samples obtained at 6-7 months, information on feeding methods, and other related parameters were analyzed. RESULTS: Data from 388 mother-infant pairs were analyzed. The prevalence of infant anemia was 21.1% at 6-7 months and 29.1% at 9-10 months. The prevalence of anemia in exclusively breast-fed infants was 28.4% at 6-7 months and 40.0% at 9-10 months. The risk factors for infant anemia at 9-10 months were exclusive breast-feeding, lower gestational age at birth, male sex, and high weight gain. The prevalence of maternal anemia was 10.5%. There was no correlation between infant and maternal hemoglobin in exclusively breast-fed infants. CONCLUSIONS: Japanese infants who were breast-fed exclusively had a high prevalence of anemia. A nationwide strategy to prevent anemia is required to prevent infant anemia, even in a nutrition-rich country such as Japan.


Assuntos
Anemia/epidemiologia , Aleitamento Materno , Lactação , Adulto , Fatores Etários , Anemia/diagnóstico , Feminino , Humanos , Lactente , Japão , Masculino , Prevalência , Estudos Retrospectivos , Fatores de Risco
12.
Endocr J ; 63(8): 727-38, 2016 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-27350720

RESUMO

Aerobic (sub lactate threshold; sub-LT) exercise training facilitates oxidative phosphorylation and glycolysis of skeletal muscle. Thyroid hormone (TH) also facilitates such metabolic events. Thus, we studied whether TH signaling pathway is activated by treadmill training. Male adult rats received 30 min/day treadmill training with different exercise intensity for 12 days. Then plasma lactate and thyrotropin (TSH) levels were measured. By lactate levels, rats were divided into stationary control (SC, 0 m/min), sub-LT (15 m/min) and supra lactate threshold (supra-LT; 25 m/min) training groups. Immediately after the last training, the soleus muscles were dissected out to measure TH receptor (TR) mRNA and protein expressions. Other rats received intraperitoneal injection of T3, 24 h after the last training and sacrificed 6 h after the injection to measure TH target gene expression. TSH level was suppressed in both sub-LT and supra-LT groups during the exercise. TRß1 mRNA and protein levels were increased in sub-LT group. Sensitivity to T3 was altered in several TH-target genes by training. Particularly, induction of Na(+)/K(+)-ATPase ß1 expression by T3 was significantly augmented in sub-LT group. These results indicate that sub-LT training alters TH signaling at least in part by increasing TRß1 expression. Such TH signaling alteration may contribute metabolic adaptation in skeletal muscle during physical training.


Assuntos
Músculo Esquelético/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Teste de Esforço , Regulação da Expressão Gênica , Ácido Láctico/metabolismo , Masculino , Consumo de Oxigênio/fisiologia , Condicionamento Físico Animal , Ratos , Ratos Wistar , Receptores dos Hormônios Tireóideos/genética , Receptores dos Hormônios Tireóideos/metabolismo , Transdução de Sinais/genética , Hormônios Tireóideos/sangue , Tireotropina/sangue
13.
Eur J Neurosci ; 40(11): 3627-34, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25220177

RESUMO

Early-life stress induces several neuropsychological disorders in adulthood, including depression. Such disorders may be induced by functional alteration of the glutamatergic system. However, their underlying mechanisms have not yet been fully clarified. Furthermore, the involvement of glucocorticoids, which are representative stress hormones, has not yet been fully clarified. In this study, we used maternal deprivation (MD) mice as an early-life-stress model, and studied the changes in the glutamatergic system in adulthood. The glutamate concentration and neuronal activity in the somatosensory cortex (SSC) increased under basal conditions in MD mice. Stressful physical stimulation (SPS) increased the concentration of corticosterone, but not of glutamate, in the control mouse SSC. On the other hand, in the MD mice, although the basal concentration of corticosterone in the SSC increased, no SPS-induced increase was observed. In contrast, the concentration of glutamate increased greatly during SPS. It was significantly high for 30 min after stimulation. The expression level of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid/N-methyl-d-aspartate receptors in the MD mice was also changed compared with that in the control mice after stimulation. These findings indicate that early-life stress disrupts the homeostasis of glutamatergic synapses.


Assuntos
Ácido Glutâmico/metabolismo , Neurônios/fisiologia , Córtex Somatossensorial/fisiopatologia , Estresse Psicológico/fisiopatologia , Sinapses/fisiologia , Animais , Animais Recém-Nascidos , Corticosterona/metabolismo , Modelos Animais de Doenças , Feminino , Homeostase/fisiologia , Masculino , Privação Materna , Camundongos Endogâmicos C57BL , Estimulação Física , Receptores de AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Córtex Somatossensorial/crescimento & desenvolvimento , Percepção do Tato/fisiologia
14.
J Physiol Sci ; 74(1): 15, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443820

RESUMO

Perfluorooctane sulfonate (PFOS) exerts adverse effects on neuronal development in young population. Limited evidences have shown that early-life PFOS exposure holds a potential risk for developing age-related neurodegenerative diseases such as Alzheimer's disease later in life. The present study investigated the effects of lactational PFOS exposure on cognitive function using one-year-old mice. Dams were exposed to PFOS (1 mg/kg body weight) through lactation by gavage. Male offspring were used for the behavior test battery to assess cognitive function. Western blot analysis was conducted to measure the levels of proteins related to the pathogenesis of Alzheimer's disease. PFOS-exposed mice displayed a mild deficiency in social recognition. In the hippocampus, the expression of tau protein was significantly increased. These results underline a mild effect of developing PFOS exposure on cognitive function and neurodegeneration. The present study presents the long-lasting effects of PFOS in middle-aged period and warrants a potential aftermath.


Assuntos
Ácidos Alcanossulfônicos , Doença de Alzheimer , Fluorocarbonos , Masculino , Feminino , Animais , Camundongos , Lactação , Fluorocarbonos/toxicidade , Hipocampo
15.
Am J Sports Med ; 52(2): 374-382, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38174366

RESUMO

BACKGROUND: Loss of meniscal function in association with degenerative changes affects the development and progression of knee osteoarthritis, for which there is currently no effective treatment. Extracorporeal shockwave therapy (ESWT) is an established treatment for musculoskeletal disorders. However, the therapeutic effect of ESWT on meniscal degeneration remains unclear. PURPOSE: To evaluate the therapeutic effect of ESWT on the degenerated meniscus in an anterior cruciate ligament transection (ACLT) model. STUDY DESIGN: Controlled laboratory study. METHODS: Twelve-week-old male Wistar rats were randomly assigned to 3 groups (normal, ESWT-, and ESWT+). Unilateral ACLT of the right knee was performed in the latter 2 groups. At 4 weeks after ACLT, the ESWT+ group received 800 shockwave impulses at an energy flux density of 0.22 mJ/mm2 in a single session. Histological changes were examined in the posterior portion of the medial meniscus after ESWT (n = 15 per group). Real-time polymerase chain reaction (PCR) was performed after ESWT (n = 5 per group) to analyze the expression of connective tissue growth factor/CCN family member 2 (CTGF/CCN2), sex determining region Y-box 9, vascular endothelial growth factor α, aggrecan, collagen type 1 alpha 2, and collagen type 2 alpha 1 (Col2α1). Immunohistochemistry was used to analyze the expression of CTGF/CCN2 and Ki-67 (n = 5 per group) after ESWT. RESULTS: The meniscal histopathological score at 4 weeks after ACLT was significantly higher than that in the normal group, and the score in the ESWT+ group was significantly lower than that in the ESWT- group at 4 and 12 weeks after ESWT. Real-time PCR revealed that the mRNA expression of CTGF/CCN2 and Col2α1 decreased 4 weeks after ACLT. In the ESWT+ group, real-time PCR revealed that the mRNA expression of CTGF/CCN2 increased 24 hours after ESWT, and the expression of Col2α1 increased 4 weeks after ESWT (all significant data were P < .05). The ratio of CTGF/CCN2-positive cells and Ki67-positive cells was significantly higher in the ESWT+ group after ESWT. CONCLUSION: The present study revealed that ESWT might suppress ACLT-induced meniscal degeneration by stimulating cartilage repair factors and inducing collagen type 2. CLINICAL RELEVANCE: ESWT can be an effective treatment to protect the degenerated meniscus in a rat model of ACLT.


Assuntos
Tratamento por Ondas de Choque Extracorpóreas , Menisco , Ratos , Masculino , Animais , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , RNA Mensageiro , Modelos Animais de Doenças
16.
Pediatr Int ; 55(6): 803-5, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24330295

RESUMO

Universal screening for anemia is important in children, but invasive blood sampling is required. A new device (Radical-7® Pulse CO-Oximeter™, Masimo, Irvine, CA, USA) now enables non-invasive hemoglobin concentration (SpHb) measurement to be done, but the usefulness of this device for anemia screening in children is unclear. The objective of this study was to compare SpHb with complete blood count (CBC) using a hematology analyzer (Microsemi® LC-667CRP; Fukuda Denshi, Tokyo, Japan). SpHb measurement with Radical-7® was done as part of a medical check-up in 3-year-old children (n = 110). Another 43 pediatric patients were checked for CBC using Microsemi® and monitored with Radical-7®. The mean SpHb level of the 3-year-old children was 12.1 ± 0.64 g/dL (range, 10.8-13.7 g/dL). The correlation of Radical-7® and Microsemi® was 0.602 (P < 0.0001). On Bland-Altman comparison, bias was -0.6 ± 1.1 g/dL. Even though further improvement is required, Radical-7® offers many possibilities in the context of primary screening.


Assuntos
Anemia/sangue , Anemia/diagnóstico , Hemoglobinas/análise , Criança , Pré-Escolar , Feminino , Testes Hematológicos/métodos , Humanos , Lactente , Masculino , Programas de Rastreamento
17.
J Vis Exp ; (200)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37870306

RESUMO

Thyroid hormone (TH) action is essential during the development of the central nervous system, including the cerebellum. In case of TH deficiency in early life such as congenital hypothyroidism, patients display neurological disorders such as cognitive retardation and motor deficits. There are various studies using mouse models with tissue- or cell-specific TH deficiency to investigate the role of TH in the cerebellum. Compared to generalized congenital hypothyroid mice, cerebellar cell-specific TH-deficient mice display milder and subtler ataxic features, making the assessment of motor function difficult when using conventional tests such as the rotarod test. Due to the need for an alternative tool to assess motor function in TH-related animal models, we developed a versatile behavioral method called the "ladder beam test," in which we can design the various ladder tests depending on the severity of ataxia in model mice. We utilized transgenic mice expressing a dominant-negative TH receptor specifically in the cerebellar Purkinje cell, a sole output neuron in the cerebellar cortex modulating motor performance. The newly-built ladder beam test successfully detected robust impairments in motor performance in the transgenic mice at a greater level compared to the rotarod test. Disruption of motor learning was also detected in the ladder beam test but not in the rotarod test. The protocol with this novel behavioral apparatus can be applied to other animal models that may show mild ataxic phenotype to examine subtle changes in cerebellar function.


Assuntos
Cerebelo , Células de Purkinje , Humanos , Camundongos , Animais , Células de Purkinje/fisiologia , Hormônios Tireóideos , Camundongos Transgênicos , Neurônios , Ataxia
18.
Adv Med Educ Pract ; 14: 1435-1443, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38149122

RESUMO

Background: The spread of the coronavirus disease (COVID-19) has significantly affected medical education. In particular, conducting practical training in a face-to-face format has become difficult. Purpose: To address this problem, online physiology practice combined with team-based learning (TBL) for deep learning of renal physiology was conducted among second-year medical students. Participants and Methods: The experiment was performed by a group of students, while other students watched online. After the experiment, all students were grouped using breakout rooms. Following a discussion of the data, a clinical case study related to the experiment was conducted using TBL. To examine the effect of online practice in a case study under TBL, the participants completed an anonymous, open-ended, web-based questionnaire after the program, enabling us to compare their expectations and satisfaction. The questionnaire consisted of questions examining students' opinions on the appropriateness of online practice, degree of understanding, ease of asking questions, time efficiency, and the usefulness of case studies using TBL. Results: There was no change in the number of students who participated in the online practice before and after class. After class, more students considered the level of understanding easier and displayed better on-time efficiency than with regular face-to-face training. However, these questions are difficult to answer. Conclusion: Online-based physiology practice combined with clinical case studies under TBL helped maintain students' expectations and satisfaction with the training.

19.
Front Endocrinol (Lausanne) ; 13: 938596, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072926

RESUMO

Activation and/or modulation of the membrane-associated receptors plays a critical role in brain development. Thyroid hormone (TH) acts on both nuclear receptors (thyroid hormone receptor, TR) and membrane-associated receptors, particularly integrin αvß3 in neurons and glia. Integrin αvß3-mediated signal transduction mediates various cellular events during development including morphogenesis, migration, synaptogenesis, and intracellular metabolism. However, the involvement of integrin αvß3-mediated TH action during brain development remains poorly understood. Thus, we examined the integrin αvß3-mediated effects of TH (T3, T4, and rT3) in the neurons and astrocytes using primary cerebellar culture, astrocyte-enriched culture, Neuro-2A clonal cells, and co-culture of neurons and astrocytes. We found that TH augments dendrite arborization of cerebellar Purkinje cells. This augmentation was suppressed by knockdown of integrin αvß3, as well as TRα and TRß. A selective integrin αvß3 antagonist, LM609, was also found to suppress TH-induced arborization. However, whether this effect was a direct action of TH on Purkinje cells or due to indirect actions of other cells subset such as astrocytes was not clarified. To further study neuron-specific molecular mechanisms, we used Neuro-2A clonal cells and found TH also induces neurite growth. TH-induced neurite growth was reduced by co-exposure with LM609 or knockdown of TRα, but not TRß. Moreover, co-culture of Neuro-2A and astrocytes also increased TH-induced neurite growth, indicating astrocytes may be involved in neuritogenesis. TH increased the localization of synapsin-1 and F-actin in filopodia tips. TH exposure also increased phosphorylation of FAK, Akt, and ERK1/2. Phosphorylation was suppressed by co-exposure with LM609 and TRα knockdown. These results indicate that TRs and integrin αvß3 play essential roles in TH-induced dendritogenesis and neuritogenesis. Furthermore, astrocytes-neuron communication via TR-dependent and TR-independent signaling through membrane receptors and F-actin are required for TH-induced neuritogenesis.


Assuntos
Actinas , Integrina alfaVbeta3 , Actinas/metabolismo , Actinas/farmacologia , Integrina alfaVbeta3/metabolismo , Receptores dos Hormônios Tireóideos/fisiologia , Transdução de Sinais/fisiologia , Receptores beta dos Hormônios Tireóideos , Hormônios Tireóideos/farmacologia , Hormônios Tireóideos/fisiologia
20.
PLoS One ; 17(12): e0277830, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36454860

RESUMO

BACKGROUND: Silencing Mediator of Retinoid and Thyroid hormone receptors (SMRT; NCoR2) is a transcriptional corepressor (CoR) which has been recognized as an important player in the regulation of hepatic lipogenesis and in somatic development in mouse embryo. SMRT protein is also widely expressed in mouse connective tissues, for example adipocytes and muscle. We recently reported that mice with global deletion of SMRT develop significant obesity and muscle wasting which are independent from thyroid hormone (TH) signaling and thermogenesis. However, the tissue specific role of SMRT in skeletal muscle is still not clear. METHODS: To clarify role of SMRT in muscle differentiation, we made myogenic C2C12 clones which lack SMRT protein (C2C12-SKO) by using CRISPR-Cas9. Wild-type C2C12 (C2C12-WT) and C2C12-SKO cells were cultured in differentiation medium, and the resulting gene and protein profiles were compared between the two cell lines both before and after differentiation. We also analyzed muscle tissues which were dissected from whole body SMRT knockout (KO) mice and their controls. RESULTS: We found significant up-regulation of muscle specific ß-oxidation markers; Peroxisome proliferator-activated receptor δ (PPARδ) and PPARγ coactivator-1α (PGC-1α) in the C2C12-SKO cells, suggesting that the cells had a similar gene profile to what is found in exercised rodent skeletal muscle. On the other hand, confocal microscopic analysis showed the significant loss of myotubes in C2C12-SKO cells similar to the morphology found in immature myoblasts. Proteomics analysis also confirmed that the C2C12-SKO cells had higher expression of markers of fibrosis (ex. Collagen1A1; COL1A1 and Fibroblast growth factor-2; FGF-2), indicating the up-regulation of Transforming growth factor-ß (TGF-ß) receptor signaling. Consistent with this, treatment with a specific TGF-ß receptor inhibitor ameliorated both the defects in myotube differentiation and fibrosis. CONCLUSION: Taken together, we demonstrate that SMRT functions as a pivotal transcriptional mediator for both ß-oxidation and the prevention for the fibrosis via TGF-ß receptor signaling in the differentiation of C2C12 myoblasts. In contrast to the results from C2C12 cells, SMRT does not appear to play a role in adult skeletal muscle of whole body SMRT KO mice. Thus, SMRT plays a significant role in the differentiation of myoblasts.


Assuntos
Fibras Musculares Esqueléticas , Correpressor 2 de Receptor Nuclear , PPAR delta , Animais , Camundongos , Diferenciação Celular , Fator 2 de Crescimento de Fibroblastos , Fibrose , Músculo Esquelético , Correpressor 2 de Receptor Nuclear/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa