Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(12): e2222005120, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36913580

RESUMO

Cardiac myosin binding protein-C (cMyBP-C) is a thick filament-associated regulatory protein frequently found mutated in patients suffering from hypertrophic cardiomyopathy (HCM). Recent in vitro experiments have highlighted the functional significance of its N-terminal region (NcMyBP-C) for heart muscle contraction, reporting regulatory interactions with both thick and thin filaments. To better understand the interactions of cMyBP-C in its native sarcomere environment, in situ Foerster resonance energy transfer-fluorescence lifetime imaging (FRET-FLIM) assays were developed to determine the spatial relationship between the NcMyBP-C and the thick and thin filaments in isolated neonatal rat cardiomyocytes (NRCs). In vitro studies showed that ligation of genetically encoded fluorophores to NcMyBP-C had no or little effect on its binding to thick and thin filament proteins. Using this assay, FRET between mTFP conjugated to NcMyBP-C and Phalloidin-iFluor 514 labeling the actin filaments in NRCs was detected by time-domain FLIM. The measured FRET efficiencies were intermediate between those observed when the donor was attached to the cardiac myosin regulatory light chain in the thick filaments and troponin T in the thin filaments. These results are consistent with the coexistence of multiple conformations of cMyBP-C, some with their N-terminal domains binding to the thin filament and others binding to the thick filament, supporting the hypothesis that the dynamic interchange between these conformations mediates interfilament signaling in the regulation of contractility. Moreover, stimulation of NRCs with ß-adrenergic agonists reduces FRET between NcMyBP-C and actin-bound Phalloidin, suggesting that cMyBP-C phosphorylation reduces its interaction with the thin filament.


Assuntos
Miocárdio , Miócitos Cardíacos , Ratos , Animais , Miócitos Cardíacos/metabolismo , Miocárdio/metabolismo , Transferência Ressonante de Energia de Fluorescência , Faloidina/metabolismo , Cadeias Leves de Miosina/metabolismo
2.
Adv Funct Mater ; 34(21)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38779415

RESUMO

Matrix remodeling plays central roles in a range of physiological and pathological processes and is driven predominantly by the activity of matrix metalloproteinases (MMPs), which degrade extracellular matrix (ECM) proteins. Our understanding of how MMPs regulate cell and tissue dynamics is often incomplete as in vivo approaches are lacking and many in vitro strategies cannot provide high-resolution, quantitative measures of enzyme activity in situ within tissue-like 3D microenvironments. Here, we incorporate a Förster resonance energy transfer (FRET) sensor of MMP activity into fully synthetic hydrogels that mimic many properties of the native ECM. We then use fluorescence lifetime imaging to provide a real-time, fluorophore concentration-independent quantification of MMP activity, establishing a highly accurate, readily adaptable platform for studying MMP dynamics in situ. MCF7 human breast cancer cells encapsulated within hydrogels highlight the detection of MMP activity both locally, at the sub-micron level, and within the bulk hydrogel. Our versatile platform may find use in a range of biological studies to explore questions in the dynamics of cancer metastasis, development, and tissue repair by providing high-resolution, quantitative and in situ readouts of local MMP activity within native tissue-like environments.

3.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673807

RESUMO

Fluorescence lifetime imaging (FLIM) and confocal fluorescence studies of a porphyrin-based photosensitiser (meso-tetraphenylporphine disulfonate: TPPS2a) were evaluated in 2D monolayer cultures and 3D compressed collagen constructs of a human ovarian cancer cell line (HEY). TPPS2a is known to be an effective model photosensitiser for both Photodynamic Therapy (PDT) and Photochemical Internalisation (PCI). This microspectrofluorimetric study aimed firstly to investigate the uptake and subcellular localisation of TPPS2a, and evaluate the photo-oxidative mechanism using reactive oxygen species (ROS) and lipid peroxidation probes combined with appropriate ROS scavengers. Light-induced intracellular redistribution of TPPS2a was observed, consistent with rupture of endolysosomes where the porphyrin localises. Using the same range of light doses, time-lapse confocal imaging permitted observation of PDT-induced generation of ROS in both 2D and 3D cancer models using fluorescence-based ROS together with specific ROS inhibitors. In addition, the use of red light excitation of the photosensitiser to minimise auto-oxidation of the probes was investigated. In the second part of the study, the photophysical properties of TPPS2a in cells were studied using a time-domain FLIM system with time-correlated single photon counting detection. Owing to the high sensitivity and spatial resolution of this system, we acquired FLIM images that enabled the fluorescence lifetime determination of the porphyrin within the endolysosomal vesicles. Changes in the lifetime dynamics upon prolonged illumination were revealed as the vesicles degraded within the cells.


Assuntos
Fármacos Fotossensibilizantes , Porfirinas , Espécies Reativas de Oxigênio , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Porfirinas/farmacologia , Porfirinas/química , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Fotoquimioterapia/métodos , Imagem Óptica/métodos , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Feminino , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/tratamento farmacológico
4.
Opt Lett ; 45(10): 2732-2735, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32412453

RESUMO

Förster resonance energy transfer (FRET) and fluorescence lifetime imaging (FLIM) have been coupled with multiphoton microscopy to image in vivo dynamics. However, the increase in optical aberrations as a function of depth significantly reduces the fluorescent signal, spatial resolution, and fluorescence lifetime accuracy. We present the development of a time-resolved FRET-FLIM imaging system with adaptive optics. We demonstrate the improvement of our adaptive optics (AO)-FRET-FLIM instrument over standard multiphoton FRET-FLIM imaging. We validate our approach using fixed cellular samples with FRET standards and in vivo with live imaging in a mouse kidney.


Assuntos
Transferência Ressonante de Energia de Fluorescência/instrumentação , Microscopia de Fluorescência/instrumentação , Dispositivos Ópticos , Macrófagos/citologia
5.
Opt Express ; 26(24): 31055-31074, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30650697

RESUMO

Time-correlated single-photon counting (TCSPC) is the gold standard for performing lifetime spectroscopy in biological assays. Traditional fluorescence lifetime imaging (FLIM) using laser scanning microscopes are inherently slow due to point scanning all pixels in the field-of-view. Wide-field implementations of TCSPC spectroscopy using microchannel plates benefit from particularly fast acquisition times at the expense of temporal resolution, and are fundamentally limited by photon counting rates. Here, we introduce programmable lifetime imaging (PLI), combining the advantages of wide-field imaging using total internal reflection excitation with state-of-the-art TCSPC detector technology for accurate lifetime determination in an object-oriented manner using a digital micromirror device (DMD). The fluorescent emission is projected onto the DMD to facilitate the sequential segmentation of fluorescence from individual objects in the field-of-view, allowing for both image acquisition and fluorescence lifetime determination of the assay. The sensitivity of PLI is demonstrated by manually segmenting fluorescence from fixed cell assays. We also demonstrate an automated implementation of PLI, using a camera as a feedback mechanism to segment fluorescence produced by emitting objects of interest in the imaging field-of-view, highlighting the advantages of measurement only in areas where valuable information exists. As a result, PLI is able to reduce acquisition time of fluorescence lifetime data by at least an order of magnitude compared to laser scanning implementations.

6.
Opt Lett ; 43(24): 6057-6060, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30548010

RESUMO

In this Letter, we will discuss the development of a multifocal multiphoton fluorescent lifetime imaging system where four individual fluorescent intensity and lifetime planes are acquired simultaneously, allowing us to obtain volumetric data without the need for sequential scanning at different axial depths. Using a phase-only spatial light modulator (SLM) with an appropriate algorithm to generate a holographic pattern, we project a beamlet array within a sample volume of a size, which can be preprogrammed by the user. We demonstrate the capabilities of the system to image live-cell interactions. While only four planes are shown, this technique can be rescaled to a large number of focal planes, enabling full 3D acquisition and reconstruction.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Sobrevivência Celular , Células Epiteliais/citologia , Humanos , Fatores de Tempo
7.
Opt Lett ; 42(7): 1269-1272, 2017 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-28362747

RESUMO

Light-sheet microscopy has become an indispensable tool for fast, low phototoxicity volumetric imaging of biological samples, predominantly providing structural or analyte concentration data in its standard format. Fluorescence lifetime imaging microscopy (FLIM) provides functional contrast, but often at limited acquisition speeds and with complex implementation. Therefore, we incorporate a dedicated frequency domain CMOS FLIM camera and intensity-modulated laser into a light-sheet setup to add fluorescence lifetime imaging functionality, allowing the rapid acquisition of volumetric data with concentration independent contrast. We then apply the system to image live transgenic zebrafish, demonstrating the capacity to rapidly collect volumetric FLIM data from an in vivo sample.


Assuntos
Microscopia de Fluorescência/métodos , Animais , Animais Geneticamente Modificados , Fatores de Tempo , Peixe-Zebra/genética
8.
Opt Express ; 24(7): 6899-915, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27136986

RESUMO

We demonstrate an implementation of a centre-of-mass method (CMM) incorporating background subtraction for use in multifocal fluorescence lifetime imaging microscopy to accurately determine fluorescence lifetime in live cell imaging using the Megaframe camera. The inclusion of background subtraction solves one of the major issues associated with centre-of-mass approaches, namely the sensitivity of the algorithm to background signal. The algorithm, which is predominantly implemented in hardware, provides real-time lifetime output and allows the user to effectively condense large amounts of photon data. Instead of requiring the transfer of thousands of photon arrival times, the lifetime is simply represented by one value which allows the system to collect data up to limit of pulse pile-up without any limitations on data transfer rates. In order to evaluate the performance of this new CMM algorithm with existing techniques (i.e. rapid lifetime determination and Levenburg-Marquardt), we imaged live MCF-7 human breast carcinoma cells transiently transfected with FRET standards. We show that, it offers significant advantages in terms of lifetime accuracy and insensitivity to variability in dark count rate (DCR) between Megaframe camera pixels. Unlike other algorithms no prior knowledge of the expected lifetime is required to perform lifetime determination. The ability of this technique to provide real-time lifetime readout makes it extremely useful for a number of applications.

9.
Opt Lett ; 41(4): 673-6, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26872160

RESUMO

Time-correlated single photon counting (TCSPC) is a fundamental fluorescence lifetime measurement technique offering high signal to noise ratio (SNR). However, its requirement for complex software algorithms for histogram processing restricts throughput in flow cytometers and prevents on-the-fly sorting of cells. We present a single-point digital silicon photomultiplier (SiPM) detector accomplishing real-time fluorescence lifetime-activated actuation targeting cell sorting applications in flow cytometry. The sensor also achieves burst-integrated fluorescence lifetime (BIFL) detection by TCSPC. The SiPM is a single-chip complementary metal-oxide-semiconductor (CMOS) sensor employing a 32×32 single-photon avalanche diode (SPAD) array and eight pairs of time-interleaved time to digital converters (TI-TDCs) with a 50 ps minimum timing resolution. The sensor's pile-up resistant embedded center of mass method (CMM) processor accomplishes low-latency measurement and thresholding of fluorescence lifetime. A digital control signal is generated with a 16.6 µs latency for cell sorter actuation allowing a maximum cell throughput of 60,000 cells per second and an error rate of 0.6%.


Assuntos
Citometria de Fluxo/instrumentação , Imagem Óptica , Óxidos/química , Fótons , Semicondutores , Silício/química , Razão Sinal-Ruído
10.
Biophys J ; 108(5): 1013-26, 2015 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-25762314

RESUMO

Deregulation of epidermal growth factor receptor (EGFR) signaling has been correlated with the development of a variety of human carcinomas. EGF-induced receptor dimerization and consequent trans- auto-phosphorylation are among the earliest events in signal transduction. Binding of EGF is thought to induce a conformational change that consequently unfolds an ectodomain loop required for dimerization indirectly. It may also induce important allosteric changes in the cytoplasmic domain. Despite extensive knowledge on the physiological activation of EGFR, the effect of targeted therapies on receptor conformation is not known and this particular aspect of receptor function, which can potentially be influenced by drug treatment, may in part explain the heterogeneous clinical response among cancer patients. Here, we used Förster resonance energy transfer/fluorescence lifetime imaging microscopy (FRET/FLIM) combined with two-color single-molecule tracking to study the effect of ATP-competitive small molecule tyrosine kinase inhibitors (TKIs) and phosphatase-based manipulation of EGFR phosphorylation on live cells. The distribution of dimer on-times was fitted to a monoexponential to extract dimer off-rates (koff). Our data show that pretreatment with gefitinib (active conformation binder) stabilizes the EGFR ligand-bound homodimer. Overexpression of EGFR-specific DEP-1 phosphatase was also found to have a stabilizing effect on the homodimer. No significant difference in the koff of the dimer could be detected when an anti-EGFR antibody (425 Snap single-chain variable fragment) that allows for dimerization of ligand-bound receptors, but not phosphorylation, was used. These results suggest that both the conformation of the extracellular domain and phosphorylation status of the receptor are involved in modulating the stability of the dimer. The relative fractions of these two EGFR subpopulations (interacting versus free) were obtained by a fractional-intensity analysis of ensemble FRET/FLIM images. Our combined imaging approach showed that both the fraction and affinity (surrogate of conformation at a single-molecule level) increased after gefitinib pretreatment or DEP-1 phosphatase overexpression. Using an EGFR mutation (I706Q, V948R) that perturbs the ability of EGFR to dimerize intracellularly, we showed that a modest drug-induced increase in the fraction/stability of the EGFR homodimer may have a significant biological impact on the tumor cell's proliferation potential.


Assuntos
Receptores ErbB/metabolismo , Multimerização Proteica , Processamento de Proteína Pós-Traducional , Linhagem Celular Tumoral , Receptores ErbB/química , Receptores ErbB/genética , Transferência Ressonante de Energia de Fluorescência , Humanos , Fosforilação , Estabilidade Proteica , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/metabolismo
11.
Cytometry A ; 87(2): 104-18, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25523156

RESUMO

Sensing ion or ligand concentrations, physico-chemical conditions, and molecular dimerization or conformation change is possible by assays involving fluorescent lifetime imaging. The inherent low throughput of imaging impedes rigorous statistical data analysis on large cell numbers. We address this limitation by developing a fluorescence lifetime-measuring flow cytometer for fast fluorescence lifetime quantification in living or fixed cell populations. The instrument combines a time-correlated single photon counting epifluorescent microscope with microfluidics cell-handling system. The associated computer software performs burst integrated fluorescence lifetime analysis to assign fluorescence lifetime, intensity, and burst duration to each passing cell. The maximum safe throughput of the instrument reaches 3,000 particles per minute. Living cells expressing spectroscopic rulers of varying peptide lengths were distinguishable by Förster resonant energy transfer measured by donor fluorescence lifetime. An epidermal growth factor (EGF)-stimulation assay demonstrated the technique's capacity to selectively quantify EGF receptor phosphorylation in cells, which was impossible by measuring sensitized emission on a standard flow cytometer. Dual-color fluorescence lifetime detection and cell-specific chemical environment sensing were exemplified using di-4-ANEPPDHQ, a lipophilic environmentally sensitive dye that exhibits changes in its fluorescence lifetime as a function of membrane lipid order. To our knowledge, this instrument opens new applications in flow cytometry which were unavailable due to technological limitations of previously reported fluorescent lifetime flow cytometers. The presented technique is sensitive to lifetimes of most popular fluorophores in the 0.5-5 ns range including fluorescent proteins and is capable of detecting multi-exponential fluorescence lifetime decays. This instrument vastly enhances the throughput of experiments involving fluorescence lifetime measurements, thereby providing statistically significant quantitative data for analysis of large cell populations. © 2014 International Society for Advancement of Cytometry.


Assuntos
Receptores ErbB/análise , Citometria de Fluxo/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Técnicas Analíticas Microfluídicas/métodos , Linhagem Celular Tumoral , Dimerização , Fator de Crescimento Epidérmico/análise , Receptores ErbB/metabolismo , Citometria de Fluxo/instrumentação , Imunofluorescência/métodos , Corantes Fluorescentes/química , Células HEK293 , Humanos , Células MCF-7 , Técnicas Analíticas Microfluídicas/instrumentação , Fosforilação , Compostos de Piridínio/química
12.
Opt Express ; 23(5): 5653-69, 2015 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-25836796

RESUMO

We present a CMOS chip 256 × 2 single photon avalanche diode (SPAD) line sensor, 23.78 µm pitch, 43.7% fill factor, custom designed for time resolved emission spectroscopy (TRES). Integrating time-to-digital converters (TDCs) implement on-chip mono-exponential fluorescence lifetime pre-calculation allowing timing of 65k photons/pixel at 200 Hz line rate at 40 ps resolution using centre-of-mass method (CMM). Per pixel time-correlated single-photon counting (TCSPC) histograms can also be generated with 320 ps bin resolution. We characterize performance in terms of dark count rate, instrument response function and lifetime uniformity for a set of fluorophores with lifetimes ranging from 4 ns to 6 ns. Lastly, we present fluorescence lifetime spectra of multicolor microspheres and skin autofluorescence acquired using a custom built spectrometer. In TCSPC mode, time-resolved spectra are acquired within 5 minutes whilst in CMM mode spectral lifetime signatures are acquired within 2 ms for fluorophore in cuvette and 200 ms for skin autofluorescence. We demonstrate CMOS line sensors to be a versatile tool for time-resolved fluorescence spectroscopy by providing parallelized and flexible spectral detection of fluorescence decay.


Assuntos
Óptica e Fotônica , Fótons , Espectrometria de Fluorescência/métodos , Artefatos , Fluoresceína , Humanos , Microesferas , Pele , Fatores de Tempo
13.
Opt Lett ; 40(18): 4305-8, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26371922

RESUMO

We present a digital architecture for fast acquisition of time correlated single photon counting (TCSPC) events from a 32×32 complementary metal oxide semiconductor (CMOS) single photon avalanche detector (SPAD) array (Megaframe) to the computer memory. Custom firmware was written to transmit event codes from 1024-TCSPC-enabled pixels for fast transfer of TCSPC events. Our 1024-channel TCSPC system is capable of acquiring up to 0.5×10(9) TCSPC events per second with 16 histogram bins spanning a 14 ns width. Other options include 320×10(6) TCSPC events per second with 256 histogram bins spanning either a 14 or 56 ns time window. We present a wide-field fluorescence microscopy setup demonstrating fast fluorescence lifetime data acquisition. To the best of our knowledge, this is the fastest direct TCSPC transfer from a single photon counting device to the computer to date.


Assuntos
Dispositivos Ópticos , Fótons , Convallaria , Metais/química , Imagem Óptica , Óxidos/química , Semicondutores , Fatores de Tempo
14.
Biochem Soc Trans ; 42(6): 1498-505, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25399560

RESUMO

Breast cancer heterogeneity demands that prognostic models must be biologically driven and recent clinical evidence indicates that future prognostic signatures need evaluation in the context of early compared with late metastatic risk prediction. In pre-clinical studies, we and others have shown that various protein-protein interactions, pertaining to the actin microfilament-associated proteins, ezrin and cofilin, mediate breast cancer cell migration, a prerequisite for cancer metastasis. Moreover, as a direct substrate for protein kinase Cα, ezrin has been shown to be a determinant of cancer metastasis for a variety of tumour types, besides breast cancer; and has been described as a pivotal regulator of metastasis by linking the plasma membrane to the actin cytoskeleton. In the present article, we demonstrate that our tissue imaging-derived parameters that pertain to or are a consequence of the PKC-ezrin interaction can be used for breast cancer prognostication, with inter-cohort reproducibility. The application of fluorescence lifetime imaging microscopy (FLIM) in formalin-fixed paraffin-embedded patient samples to probe protein proximity within the typically <10 nm range to address the oncological challenge of tumour heterogeneity, is discussed.


Assuntos
Neoplasias da Mama/patologia , Proteína Quinase C-alfa/metabolismo , Fatores de Despolimerização de Actina/metabolismo , Neoplasias da Mama/enzimologia , Neoplasias da Mama/metabolismo , Proteínas do Citoesqueleto/metabolismo , Feminino , Transferência Ressonante de Energia de Fluorescência , Humanos , Metástase Neoplásica , Fosforilação , Frações Subcelulares/metabolismo , Especificidade por Substrato , Resultado do Tratamento
15.
Opt Lett ; 39(8): 2431-4, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24979011

RESUMO

We report on the development of a doubly weighted Gerchberg-Saxton algorithm (DWGS) to enable generation of uniform beamlet arrays with a spatial light modulator (SLM) for use in multiphoton multifocal imaging applications. The algorithm incorporates the WGS algorithm as well as feedback of fluorescence signals from the sample measured with a single-photon avalanche diode (SPAD) detector array. This technique compensates for issues associated with nonuniform illumination onto the SLM, the effects due to aberrations and the variability in gain between detectors within the SPAD array to generate a uniformly illuminated multiphoton fluorescence image. We demonstrate the use of the DWGS with a number of beamlet array patterns to image muscle fibers of a 5-day-old fixed zebrafish larvae.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/métodos , Algoritmos , Animais , Processamento de Imagem Assistida por Computador/estatística & dados numéricos , Larva/citologia , Microscopia de Fluorescência por Excitação Multifotônica/instrumentação , Microscopia de Fluorescência por Excitação Multifotônica/estatística & dados numéricos , Fibras Musculares Esqueléticas/citologia , Fenômenos Ópticos , Peixe-Zebra/anatomia & histologia
16.
Opt Lett ; 39(20): 6013-6, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25361143

RESUMO

Imaging the spatiotemporal interaction of proteins in vivo is essential to understanding the complexities of biological systems. The highest accuracy monitoring of protein-protein interactions is achieved using Förster resonance energy transfer (FRET) measured by fluorescence lifetime imaging, with measurements taking minutes to acquire a single frame, limiting their use in dynamic live cell systems. We present a diffraction limited, massively parallel, time-resolved multifocal multiphoton microscope capable of producing fluorescence lifetime images with 55 ps time-resolution, giving improvements in acquisition speed of a factor of 64. We present demonstrations with FRET imaging in a model cell system and demonstrate in vivo FLIM using a GTPase biosensor in the zebrafish embryo.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Animais , Células MCF-7 , Fatores de Tempo , Peixe-Zebra
17.
J Biol Chem ; 287(21): 17459-17470, 2012 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-22442150

RESUMO

IgE binding to its high affinity receptor FcεRI on mast cells and basophils is a key step in the mechanism of allergic disease and a target for therapeutic intervention. Early indications that IgE adopts a bent structure in solution have been confirmed by recent x-ray crystallographic studies of IgEFc, which further showed that the bend, contrary to expectation, is enhanced in the crystal structure of the complex with receptor. To investigate the structure of IgEFc and its conformational changes that accompany receptor binding in solution, we created a Förster resonance energy transfer (FRET) biosensor using biologically encoded fluorescent proteins fused to the N- and C-terminal IgEFc domains (Cε2 and Cε4, respectively) together with the theoretical basis for quantitating its behavior. This revealed not only that the IgEFc exists in a bent conformation in solution but also that the bend is indeed enhanced upon FcεRI binding. No change in the degree of bending was seen upon binding to the B cell receptor for IgE, CD23 (FcεRII), but in contrast, binding of the anti-IgE therapeutic antibody omalizumab decreases the extent of the bend, implying a conformational change that opposes FcεRI engagement. HomoFRET measurements further revealed that the (Cε2)(2) and (Cε4)(2) domain pairs behave as rigid units flanking the conformational change in the Cε3 domains. Finally, modeling of the accessible conformations of the two Fab arms in FcεRI-bound IgE revealed a mutual exclusion not seen in IgG and Fab orientations relative to the membrane that may predispose receptor-bound IgE to cross-linking by allergens.


Assuntos
Alérgenos/análise , Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Fluorescência Verde/química , Imunoglobulina E/química , Fragmentos Fc das Imunoglobulinas/química , Receptores de IgE/química , Anticorpos Anti-Idiotípicos/química , Anticorpos Monoclonais Humanizados/química , Proteínas de Fluorescência Verde/genética , Células HEK293 , Humanos , Imunoglobulina E/genética , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/genética , Omalizumab , Receptores de IgE/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
18.
Sensors (Basel) ; 12(5): 5650-69, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22778606

RESUMO

We have successfully demonstrated video-rate CMOS single-photon avalanche diode (SPAD)-based cameras for fluorescence lifetime imaging microscopy (FLIM) by applying innovative FLIM algorithms. We also review and compare several time-domain techniques and solid-state FLIM systems, and adapt the proposed algorithms for massive CMOS SPAD-based arrays and hardware implementations. The theoretical error equations are derived and their performances are demonstrated on the data obtained from 0.13 µm CMOS SPAD arrays and the multiple-decay data obtained from scanning PMT systems. In vivo two photon fluorescence lifetime imaging data of FITC-albumin labeled vasculature of a P22 rat carcinosarcoma (BD9 rat window chamber) are used to test how different algorithms perform on bi-decay data. The proposed techniques are capable of producing lifetime images with enough contrast.

19.
Chemphyschem ; 12(3): 442-61, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21328516

RESUMO

Herein we discuss how FRET imaging can contribute at various stages to delineate the function of the proteome. Therefore, we briefly describe FRET imaging techniques, the selection of suitable FRET pairs and potential caveats. Furthermore, we discuss state-of-the-art FRET-based screening approaches (underpinned by protein interaction network analysis using computational biology) and preclinical intravital FRET-imaging techniques that can be used for functional validation of candidate hits (nodes and edges) from the network screen, as well as measurement of the efficacy of perturbing these nodes/edges by short hairpin RNA (shRNA) and/or small molecule-based approaches.


Assuntos
Transferência Ressonante de Energia de Fluorescência/métodos , Neoplasias/metabolismo , Mapeamento de Interação de Proteínas , Proteínas/química , Biologia Computacional , Corantes Fluorescentes/química , Humanos , Domínios e Motivos de Interação entre Proteínas , Proteínas/metabolismo
20.
Nat Commun ; 12(1): 5687, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34584076

RESUMO

Cell migration is important for development and its aberrant regulation contributes to many diseases. The Scar/WAVE complex is essential for Arp2/3 mediated lamellipodia formation during mesenchymal cell migration and several coinciding signals activate it. However, so far, no direct negative regulators are known. Here we identify Nance-Horan Syndrome-like 1 protein (NHSL1) as a direct binding partner of the Scar/WAVE complex, which co-localise at protruding lamellipodia. This interaction is mediated by the Abi SH3 domain and two binding sites in NHSL1. Furthermore, active Rac binds to NHSL1 at two regions that mediate leading edge targeting of NHSL1. Surprisingly, NHSL1 inhibits cell migration through its interaction with the Scar/WAVE complex. Mechanistically, NHSL1 may reduce cell migration efficiency by impeding Arp2/3 activity, as measured in cells using a Arp2/3 FRET-FLIM biosensor, resulting in reduced F-actin density of lamellipodia, and consequently impairing the stability of lamellipodia protrusions.


Assuntos
Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Proteínas/metabolismo , Pseudópodes/fisiologia , Família de Proteínas da Síndrome de Wiskott-Aldrich/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Camundongos , Proteínas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa