Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Biol Chem ; 292(17): 6910-6926, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28280242

RESUMO

The class C G protein-coupled receptor GPRC6A is a putative nutrient-sensing receptor and represents a possible new drug target in metabolic disorders. However, the specific physiological role of this receptor has yet to be identified, and the mechanisms regulating its activity and cell surface availability also remain enigmatic. In the present study, we investigated the trafficking properties of GPRC6A by use of both a classical antibody feeding internalization assay in which cells were visualized using confocal microscopy and a novel internalization assay that is based on real-time measurements of fluorescence resonance energy transfer. Both assays revealed that GPRC6A predominantly undergoes constitutive internalization, whereas the agonist-induced effects were imperceptible. Moreover, postendocytic sorting was investigated by assessing the co-localization of internalized GPRC6A with selected Rab protein markers. Internalized GPRC6A was mainly co-localized with the early endosome marker Rab5 and the long loop recycling endosome marker Rab11 and to a much lesser extent with the late endosome marker Rab7. This suggests that upon agonist-independent internalization, GPRC6A is recycled via the Rab11-positive slow recycling pathway, which may be responsible for ensuring a persistent pool of GPRC6A receptors at the cell surface despite chronic agonist exposure. Distinct trafficking pathways have been reported for several of the class C receptors, and our results thus substantiate that non-canonical trafficking mechanisms are a common feature for the nutrient-sensing class C family that ensure functional receptors in the cell membrane despite prolonged agonist exposure.


Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Animais , Membrana Celular/metabolismo , Endocitose , Endossomos/metabolismo , Transferência Ressonante de Energia de Fluorescência , Células HEK293 , Humanos , Camundongos , Microscopia Confocal , Transporte Proteico/fisiologia , Ratos , Transferrina/química , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
2.
J Neurosci ; 35(36): 12425-31, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26354911

RESUMO

Neurotrophin-3 (NT-3) and its high-affinity receptor TrkC play crucial trophic roles in neuronal differentiation, axon outgrowth, and synapse development and plasticity in the nervous system. We demonstrated previously that postsynaptic TrkC functions as a glutamatergic synapse-inducing (synaptogenic) cell adhesion molecule trans-interacting with presynaptic protein tyrosine phosphatase σ (PTPσ). Given that NT-3 and PTPσ bind distinct domains of the TrkC extracellular region, here we tested the hypothesis that NT-3 modulates TrkC/PTPσ binding and synaptogenic activity. NT-3 enhanced PTPσ binding to cell surface-expressed TrkC and facilitated the presynapse-inducing activity of TrkC in rat hippocampal neurons. Imaging of recycling presynaptic vesicles combined with TrkC knockdown and rescue approaches demonstrated that NT-3 rapidly potentiates presynaptic function via binding endogenous postsynaptic TrkC in a tyrosine kinase-independent manner. Thus, NT-3 positively modulates the TrkC-PTPσ complex for glutamatergic presynaptic assembly and function independently from TrkC kinase activation. Our findings provide new insight into synaptic roles of neurotrophin signaling and mechanisms controlling synaptic organizing complexes. Significance statement: Although many synaptogenic adhesion complexes have been identified in recent years, little is known about modulatory mechanisms. Here, we demonstrate a novel role of neurotrophin-3 in synaptic assembly and function as a positive modulator of the TrkC-protein tyrosine phosphatase σ complex. This study provides new insight into the involvement of neurotrophin signaling in synapse development and plasticity, presenting a molecular mechanism that may underlie previous observations of short- and long-term enhancement of presynaptic function by neurotrophin. Given the links of synaptogenic adhesion molecules to autism and schizophrenia, this study might also contribute to a better understanding of the pathogenesis of these disorders and provide a new direction for ameliorating imbalances in synaptic signaling networks.


Assuntos
Hipocampo/metabolismo , Neurônios/metabolismo , Neurotrofina 3/metabolismo , Receptor trkC/metabolismo , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores/metabolismo , Sinapses/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Feminino , Hipocampo/citologia , Masculino , Neurônios/fisiologia , Ligação Proteica , Ratos , Receptor trkC/genética , Sinapses/fisiologia
3.
Biochemistry ; 51(2): 586-96, 2012 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-22129425

RESUMO

PICK1 (protein interacting with C kinase 1) contains an N-terminal protein binding PDZ domain and a C-terminal lipid binding BAR domain. PICK1 plays a key role in several physiological processes, including synaptic plasticity. However, little is known about the cellular mechanisms governing the activity of PICK1 itself. Here we show that PICK1 is a substrate in vitro both for PKCα (protein kinase Cα), as previously shown, and for CaMKIIα (Ca(2+)-calmodulin-dependent protein kinase IIα). By mutation of predicted phosphorylation sites, we identify Ser77 in the PDZ domain as a major phosphorylation site for PKCα. Mutation of Ser77 reduced the level of PKCα-mediated phosphorylation ~50%, whereas no reduction was observed upon mutation of seven other predicted sites. Addition of lipid vesicles increased the level of phosphorylation of Ser77 10-fold, indicating that lipid binding is critical for optimal phosphorylation. Binding of PKCα to the PICK1 PDZ domain was not required for phosphorylation, but a PDZ domain peptide ligand reduced the overall level of phosphorylation ~30%. The phosphomimic S77D reduced the extent of cytosolic clustering of eYFP-PICK1 in COS7 cells and thereby conceivably its lipid binding and/or polymerization capacity. We propose that PICK1 is phosphorylated at Ser77 by PKCα preferentially when bound to membrane vesicles and that this phosphorylation in turn modulates its cellular distribution.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Metabolismo dos Lipídeos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Domínios PDZ , Proteína Quinase C-alfa/metabolismo , Serina , Substituição de Aminoácidos , Animais , Sítios de Ligação , Células COS , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas de Transporte/genética , Chlorocebus aethiops , Proteínas do Citoesqueleto , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Proteínas Nucleares/genética , Fosforilação , Transporte Proteico
4.
Traffic ; 9(8): 1327-43, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18466293

RESUMO

The PSD-95/Discs-large/ZO-1 homology (PDZ) domain protein, protein interacting with C kinase 1 (PICK1) contains a C-terminal Bin/amphiphysin/Rvs (BAR) domain mediating recognition of curved membranes; however, the molecular mechanisms controlling the activity of this domain are poorly understood. In agreement with negative regulation of the BAR domain by the N-terminal PDZ domain, PICK1 distributed evenly in the cytoplasm, whereas truncation of the PDZ domain caused BAR domain-dependent redistribution to clusters colocalizing with markers of recycling endosomal compartments. A similar clustering was observed both upon truncation of a short putative alpha-helical segment in the linker between the PDZ and the BAR domains and upon coexpression of PICK1 with a transmembrane PDZ ligand, including the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor GluR2 subunit, the GluR2 C-terminus transferred to the single transmembrane protein Tac or the dopamine transporter C-terminus transferred to Tac. In contrast, transfer of the GluR2 C-terminus to cyan fluorescent protein, a cytosolic protein, did not elicit BAR domain-dependent clustering. Instead, localizing PICK1 to the membrane by introducing an N-terminal myristoylation site produced BAR domain-dependent, but ligand-independent, PICK1 clustering. The data support that in the absence of PDZ ligand, the PICK1 BAR domain is inhibited through a PDZ domain-dependent and linker-dependent mechanism. Moreover, they suggest that unmasking of the BAR domain's membrane-binding capacity is not a consequence of ligand binding to the PDZ domain per se but results from, and coincides with, recruitment of PICK1 to a membrane compartment.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Regulação da Expressão Gênica , Proteínas Nucleares/metabolismo , Animais , Transporte Biológico , Células COS , Chlorocebus aethiops , Proteínas do Citoesqueleto , Hipocampo/metabolismo , Ligantes , Lipídeos/química , Modelos Biológicos , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ratos
5.
EMBO Mol Med ; 12(6): e11248, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32352640

RESUMO

Maladaptive plasticity involving increased expression of AMPA-type glutamate receptors is involved in several pathologies, including neuropathic pain, but direct inhibition of AMPARs is associated with side effects. As an alternative, we developed a cell-permeable, high-affinity (~2 nM) peptide inhibitor, Tat-P4 -(C5)2 , of the PDZ domain protein PICK1 to interfere with increased AMPAR expression. The affinity is obtained partly from the Tat peptide and partly from the bivalency of the PDZ motif, engaging PDZ domains from two separate PICK1 dimers to form a tetrameric complex. Bivalent Tat-P4 -(C5)2 disrupts PICK1 interaction with membrane proteins on supported cell membrane sheets and reduce the interaction of AMPARs with PICK1 and AMPA-receptor surface expression in vivo. Moreover, Tat-P4 -(C5)2 administration reduces spinal cord transmission and alleviates mechanical hyperalgesia in the spared nerve injury model of neuropathic pain. Taken together, our data reveal Tat-P4 -(C5)2 as a novel promising lead for neuropathic pain treatment and expand the therapeutic potential of bivalent inhibitors to non-tandem protein-protein interaction domains.


Assuntos
Neuralgia , Domínios PDZ , Proteínas de Transporte/metabolismo , Humanos , Neuralgia/tratamento farmacológico , Proteínas Nucleares/metabolismo , Receptores de AMPA/metabolismo
6.
Elife ; 82019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30605082

RESUMO

PDZ domain scaffold proteins are molecular modules orchestrating cellular signalling in space and time. Here, we investigate assembly of PDZ scaffolds using supported cell membrane sheets, a unique experimental setup enabling direct access to the intracellular face of the cell membrane. Our data demonstrate how multivalent protein-protein and protein-lipid interactions provide critical avidity for the strong binding between the PDZ domain scaffold proteins, PICK1 and PSD-95, and their cognate transmembrane binding partners. The kinetics of the binding were remarkably slow and binding strength two-three orders of magnitude higher than the intrinsic affinity for the isolated PDZ interaction. Interestingly, discrete changes in the intrinsic PICK1 PDZ affinity did not affect overall binding strength but instead revealed dual scaffold modes for PICK1. Our data supported by simulations suggest that intrinsic PDZ domain affinities are finely tuned and encode specific cellular responses, enabling multiplexed cellular functions of PDZ scaffolds.


Assuntos
Membrana Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteína 4 Homóloga a Disks-Large/metabolismo , Domínios PDZ , Sítio Alostérico , Motivos de Aminoácidos , Animais , Sítios de Ligação , Células HEK293 , Hipocampo/metabolismo , Humanos , Cinética , Ligantes , Mutação , Neurônios/metabolismo , Ligação Proteica , Domínios Proteicos , Ratos , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Termodinâmica
7.
Cell Rep ; 23(7): 2056-2069, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29768204

RESUMO

BAR domains are dimeric protein modules that sense, induce, and stabilize lipid membrane curvature. Here, we show that membrane curvature sensing (MCS) directs cellular localization and function of the BAR domain protein PICK1. In PICK1, and the homologous proteins ICA69 and arfaptin2, we identify an amphipathic helix N-terminal to the BAR domain that mediates MCS. Mutational disruption of the helix in PICK1 impaired MCS without affecting membrane binding per se. In insulin-producing INS-1E cells, super-resolution microscopy revealed that disruption of the helix selectively compromised PICK1 density on insulin granules of high curvature during their maturation. This was accompanied by reduced hormone storage in the INS-1E cells. In Drosophila, disruption of the helix compromised growth regulation. By demonstrating size-dependent binding on insulin granules, our finding highlights the function of MCS for BAR domain proteins in a biological context distinct from their function, e.g., at the plasma membrane during endocytosis.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Grânulos Citoplasmáticos/metabolismo , Drosophila melanogaster/metabolismo , Insulina/metabolismo , Secreção de Insulina , Lipossomos , Ligação Proteica , Domínios Proteicos , Estrutura Secundária de Proteína , Relação Estrutura-Atividade
8.
Cell Rep ; 21(13): 3637-3645, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29281813

RESUMO

Synaptopathies contributing to neurodevelopmental disorders are linked to mutations in synaptic organizing molecules, including postsynaptic neuroligins, presynaptic neurexins, and MDGAs, which regulate their interaction. The role of MDGA1 in suppressing inhibitory versus excitatory synapses is controversial based on in vitro studies. We show that genetic deletion of MDGA1 in vivo elevates hippocampal CA1 inhibitory, but not excitatory, synapse density and transmission. Furthermore, MDGA1 is selectively expressed by pyramidal neurons and regulates perisomatic, but not distal dendritic, inhibitory synapses. Mdga1-/- hippocampal networks demonstrate muted responses to neural excitation, and Mdga1-/- mice are resistant to induced seizures. Mdga1-/- mice further demonstrate compromised hippocampal long-term potentiation, consistent with observed deficits in spatial and context-dependent learning and memory. These results suggest that mutations in MDGA1 may contribute to cognitive deficits through altered synaptic transmission and plasticity by loss of suppression of inhibitory synapse development in a subcellular domain- and cell-type-selective manner.


Assuntos
Cognição , Rede Nervosa/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Inibição Neural , Sinapses/metabolismo , Animais , Região CA1 Hipocampal/patologia , Deleção de Genes , Potenciação de Longa Duração , Camundongos Endogâmicos C57BL , Camundongos Knockout , Moléculas de Adesão de Célula Nervosa/deficiência , Sinapses/ultraestrutura , Transmissão Sináptica
9.
Neurochem Int ; 98: 103-14, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27020406

RESUMO

The high affinity transporters for the monoamine neurotransmitters, dopamine, norepinephrine, and serotonin, play a key role in controlling monoaminergic neurotransmission. It is believed that the transporters (DAT, NET and SERT, respectively) are subject to tight regulation by the cellular signaling machinery to maintain monoaminergic homeostasis. Kinases constitute a pivotal role in cellular signaling, however, the regulation of monoamine transporters by the entire ensemble of kinases is unknown. Here, we perform a whole human kinome RNA interference screen to identify novel kinases involved in regulation of monoamine transporter function and surface expression. A primary screen in HEK 293 cells stably expressing DAT or SERT with siRNAs against 573 human kinases revealed 93 kinases putatively regulating transporter function. All 93 hits, which also included kinases previously implicated in monoamine transporter regulation, such as Protein kinase B (Akt) and mitogen-activated protein kinases (MAPK), were validated with a new set of siRNAs in a secondary screen. In this screen we assessed both changes in uptake and surface expression leading to selection of 11 kinases for further evaluation in HEK 293 cells transiently expressing DAT, SERT or NET. Subsequently, three kinases; salt inducible kinase 3 (SIK3), cAMP-dependent protein kinase catalytic subunit alpha (PKA C-α) and protein kinase X-linked (PrKX); were selected for additional exploration in catecholaminergic CATH.a differentiated cells (CAD) and rat chromocytoma (PC12) cells. Whereas SIK3 likely transcriptionally regulated expression of the three transfected transporters, depletion of PKA C-α was shown to decrease SERT function. Depletion of PrKX caused decreased surface expression and function of DAT without changing protein levels, suggesting that PrKX stabilizes the transporter at the cell surface. Summarized, our data provide novel insight into kinome regulation of the monoamine transporters and identifies PrKX as a yet unappreciated possible regulator of monoamine transporter function.


Assuntos
Proteínas Quinases/genética , Proteínas Vesiculares de Transporte de Monoamina/fisiologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Neurotransmissores/metabolismo , Proteína Quinase C-alfa/genética , Proteína Quinase C-alfa/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , RNA/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Proteínas Vesiculares de Transporte de Monoamina/genética , Proteínas Vesiculares de Transporte de Monoamina/metabolismo
10.
Neuron ; 91(5): 1052-1068, 2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27608760

RESUMO

Mutations in a synaptic organizing pathway contribute to autism. Autism-associated mutations in MDGA2 (MAM domain containing glycosylphosphatidylinositol anchor 2) are thought to reduce excitatory/inhibitory transmission. However, we show that mutation of Mdga2 elevates excitatory transmission, and that MDGA2 blocks neuroligin-1 interaction with neurexins and suppresses excitatory synapse development. Mdga2(+/-) mice, modeling autism mutations, demonstrated increased asymmetric synapse density, mEPSC frequency and amplitude, and altered LTP, with no change in measures of inhibitory synapses. Behavioral assays revealed an autism-like phenotype including stereotypy, aberrant social interactions, and impaired memory. In vivo voltage-sensitive dye imaging, facilitating comparison with fMRI studies in autism, revealed widespread increases in cortical spontaneous activity and intracortical functional connectivity. These results suggest that mutations in MDGA2 contribute to altered cortical processing through the dual disadvantages of elevated excitation and hyperconnectivity, and indicate that perturbations of the NRXN-NLGN pathway in either direction from the norm increase risk for autism.


Assuntos
Moléculas de Adesão Celular Neuronais/fisiologia , Córtex Cerebral/fisiologia , Cognição/fisiologia , Proteínas Ligadas por GPI/fisiologia , Haploinsuficiência/fisiologia , Moléculas de Adesão de Célula Nervosa/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Moléculas de Adesão Celular Neuronais/metabolismo , Células Cultivadas , Córtex Cerebral/metabolismo , Proteína 4 Homóloga a Disks-Large , Potenciais Pós-Sinápticos Excitadores/fisiologia , Proteínas Ligadas por GPI/biossíntese , Proteínas Ligadas por GPI/genética , Guanilato Quinases/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiologia , Potenciação de Longa Duração/fisiologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/fisiologia , Moléculas de Adesão de Célula Nervosa/biossíntese , Moléculas de Adesão de Célula Nervosa/genética , Receptores de AMPA/metabolismo , Receptores de AMPA/fisiologia , Sinapses/metabolismo
11.
Structure ; 23(7): 1258-1270, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26073603

RESUMO

PICK1 is a neuronal scaffolding protein containing a PDZ domain and an auto-inhibited BAR domain. BAR domains are membrane-sculpting protein modules generating membrane curvature and promoting membrane fission. Previous data suggest that BAR domains are organized in lattice-like arrangements when stabilizing membranes but little is known about structural organization of BAR domains in solution. Through a small-angle X-ray scattering (SAXS) analysis, we determine the structure of dimeric and tetrameric complexes of PICK1 in solution. SAXS and biochemical data reveal a strong propensity of PICK1 to form higher-order structures, and SAXS analysis suggests an offset, parallel mode of BAR-BAR oligomerization. Furthermore, unlike accessory domains in other BAR domain proteins, the positioning of the PDZ domains is flexible, enabling PICK1 to perform long-range, dynamic scaffolding of membrane-associated proteins. Together with functional data, these structural findings are compatible with a model in which oligomerization governs auto-inhibition of BAR domain function.


Assuntos
Proteínas de Transporte/química , Proteínas Nucleares/química , Animais , Células COS , Cálcio/química , Chlorocebus aethiops , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Espalhamento a Baixo Ângulo , Soluções , Difração de Raios X
12.
Nat Commun ; 4: 1580, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23481388

RESUMO

The dopamine transporter mediates reuptake of dopamine from the synaptic cleft. The cellular mechanisms controlling dopamine transporter levels in striatal nerve terminals remain poorly understood. The dopamine transporters contain a C-terminal PDZ (PSD-95/Discs-large/ZO-1) domain-binding sequence believed to bind synaptic scaffolding proteins, but its functional significance is uncertain. Here we demonstrate that two different dopamine transporter knock-in mice with disrupted PDZ-binding motifs (dopamine transporter-AAA and dopamine transporter+Ala) are characterized by dramatic loss of dopamine transporter expression in the striatum, causing hyperlocomotion and attenuated response to amphetamine. In cultured dopaminergic neurons and striatal slices from dopamine transporter-AAA mice, we find markedly reduced dopamine transporter surface levels and evidence for enhanced constitutive internalization. In dopamine transporter-AAA neurons, but not in wild-type neurons, surface levels are rescued in part by expression of a dominant-negative dynamin mutation (K44A). Our findings suggest that PDZ-domain interactions are critical for synaptic distribution of dopamine transporter in vivo and thereby for proper maintenance of dopamine homoeostasis.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Neostriado/metabolismo , Domínios PDZ , Sequência de Aminoácidos , Anfetamina/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Sítios de Ligação , Transporte Biológico/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Endocitose/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Imuno-Histoquímica , Locomoção/efeitos dos fármacos , Camundongos , Camundongos Knockout , Mutação/genética , Neostriado/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Fenótipo , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/metabolismo , Ligação Proteica/efeitos dos fármacos , Relação Estrutura-Atividade
13.
Am J Physiol Regul Integr Comp Physiol ; 290(6): R1683-90, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16439672

RESUMO

In this study, primary cultures of trout skeletal muscle cells were used to investigate the main signal transduction pathways of insulin and IGF-I receptors in rainbow trout muscle. At different stages of in vitro development (myoblasts on day 1, myocytes on day 4, and fully developed myotubes on day 11), we detected in these cells the presence of immunoreactivity against ERK 1/2 MAPK and Akt/PKB proteins, components of the MAPK and the phosphatidylinositol 3-kinase-Akt pathways, respectively, two of the main intracellular transduction pathways for insulin and IGF-I receptors. Both insulin and IGF-I activated both pathways, although the latter provoked higher immunoreactivity of phosphorylated MAPKs and Akt proteins. At every stage, increases in total MAPK immunoreactivity levels were observed when cells were stimulated with IGF-I or insulin, while total Akt immunoreactivity levels changed little under stimulation of peptides. Total Akt and total MAPK levels increased as skeletal muscle cells differentiated in culture. Moreover, when cells were incubated with IGF-I or insulin, MAPK-P immunoreactivity levels showed greater increases over the basal levels on days 1 and 4, with no effect observed on day 11. Although Akt-P immunoreactivity displayed improved responses on days 1 and 4 as well, a stimulatory effect was still observed on day 11. In addition, the present study demonstrates that purified trout insulin receptors possess higher phosphorylative activity per unit of receptor than IGF-I receptors. In conclusion, these results indicate that trout skeletal muscle culture is a suitable model to study the insulin and IGF-I signal transduction molecules and that there is a different regulation of MAPK and Akt pathways depending on the developmental stage of the muscle cells.


Assuntos
Fibras Musculares Esqueléticas/fisiologia , Oncorhynchus mykiss/fisiologia , Receptor IGF Tipo 1/fisiologia , Receptor de Insulina/fisiologia , Transdução de Sinais/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Flavonoides/farmacologia , Insulina/metabolismo , Insulina/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Mioblastos/citologia , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosforilação/efeitos dos fármacos , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa