RESUMO
BACKGROUND: Whales have captivated the human imagination for millennia. These incredible cetaceans are the only mammals that have adapted to life in the open oceans and have been a source of human food, fuel and tools around the globe. The transition from land to water has led to various aquatic specializations related to hairless skin and ability to regulate their body temperature in cold water. RESULTS: We present four common minke whale (Balaenoptera acutorostrata) genomes with depth of ×13 ~ ×17 coverage and perform resequencing technology without a reference sequence. Our results indicated the time to the most recent common ancestors of common minke whales to be about 2.3574 (95% HPD, 1.1521 - 3.9212) million years ago. Further, we found that genes associated with epilation and tooth-development showed signatures of positive selection, supporting the morphological uniqueness of whales. CONCLUSIONS: This whole-genome sequencing offers a chance to better understand the evolutionary journey of one of the largest mammals on earth.
Assuntos
Evolução Biológica , Genoma , Baleia Anã/classificação , Baleia Anã/genética , Animais , Teorema de Bayes , Golfinhos/classificação , Golfinhos/genética , Golfinhos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Baleia Anã/metabolismo , Filogenia , Análise de Sequência de DNARESUMO
A Gram-stain-negative, aerobic, non-spore-forming, non-flagellated and rod-shaped or ovoid bacterial strain, designated RA1(T), was isolated from faeces collected from Beluga whale (Delphinapterus leucas) in Yeosu aquarium, South Korea. Strain RA1(T) grew optimally at 25 °C, at pH 7.0-8.0 and in the presence of 2.0â% (w/v) NaCl. Neighbour-joining, maximum-likelihood and maximum-parsimony phylogenetic trees based on 16S rRNA gene sequences revealed that strain RA1(T) joins the cluster comprising the type strains of three species of the genus Amphritea, with which it exhibited 95.8-96.0â% sequence similarity. Sequence similarities to the type strains of other recognized species were less than 94.3â%. Strain RA1(T) contained Q-8 as the predominant ubiquinone and summed feature 3 (C16â:â1ω7c and/or C16â:â1ω6c), C18â:â1ω7c and C16â:â0 as the major fatty acids. The major polar lipids of strain RA1(T) were phosphatidylethanolamine, phosphatidylglycerol, two unidentified lipids and one unidentified aminolipid. The DNA G+C content of strain RA1(T) was 47.4 mol%. The differential phenotypic properties, together with the phylogenetic distinctiveness, revealed that strain RA1(T) is separated from other species of the genus Amphritea. On the basis of the data presented, strain RA1(T) is considered to represent a novel species of the genus Amphritea, for which the name Amphritea ceti sp. nov. is proposed. The type strain is RA1(T) (â=âKCTC 42154(T)â=âNBRC 110551(T)).