Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Environ Res ; 224: 115504, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36796604

RESUMO

Marine heatwaves (MHWs) are extreme weather events featuring abnormally high seawater temperature, and expected to increase in frequency, duration and severity over this century. The impacts of these phenomena on physiological performance of coral reef species require understanding. This study aimed to evaluate the effects of a simulated MHW (category IV; ΔT = +2 °C, 11 days) (after exposure and 10-day recovery period) on fatty acid (FA) composition (as a biochemical indicator) and energy budget (i.e., growth, G, excretion (faecal, F and nitrogenous losses, U), respiration, R and food consumption, C) of a juvenile tropical surgeonfish species (Zebrasoma scopas). Significant and different changes were found under MHW scenario for some of the most abundant FA and respective groups (i.e., an increase in the contents of 14:0, 18:1n-9, ΣMonounsaturated (ΣMUFA) and 18:2n-6; and a decrease in the levels of 16:0, ΣSaturated (ΣSFA), 18:1n-7, 22:5n-3 and ΣPolyunsaturated (ΣPUFA)). The contents of 16:0 and ΣSFA were also significantly lower after MHW exposure compared to control (CTRL). Additionally, lower feed efficiency (FE), relative growth rate (RGR) and specific growth rate in terms of wet weight (SGRw), as well as higher energy loss for respiration were observed under MHW exposure conditions in comparison with CTRL and MHW recovery period. The energy proportion channelled for faeces dominated the mode of energy allocation, followed by growth in both treatments (after exposure). After MHW recovery, this trend was reversed, and a higher percentage was spent for growth and a lower fraction for faeces than in the MHW exposure period. Overall, FA composition, growth rates and energy loss for respiration of Z. Scopas were the physiological parameters most influenced (mainly in a negative way) by an 11-day MHW event. The observed effects in this tropical species can be exacerbated with increasing intensity and frequency of these extreme events.


Assuntos
Ácidos Graxos , Perciformes , Animais , Ecossistema , Peixes , Água do Mar , Temperatura
2.
Environ Res ; 169: 7-25, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30399468

RESUMO

Pharmaceuticals, such as the antidepressant venlafaxine (VFX), have been frequently detected in coastal waters and marine biota, and there is a growing body of evidence that these pollutants can be toxic to non-target marine biota, even at low concentrations. Alongside, climate change effects (e.g. warming and acidification) can also affect marine species' physiological fitness and, consequently, compromising their ability to cope with the presence of pollutants. Yet, information regarding interactive effects between pollutants and climate change-related stressors is still scarce. Within this context, the present study aims to assess the differential ecotoxicological responses (antioxidant activity, heat shock response, protein degradation, endocrine disruption and neurotoxicity) of juvenile fish (Argyrosomus regius) tissues (muscle, gills, liver and brain) exposed to VFX (via water or feed), as well as to the interactive effects of warming (ΔT °C = +5 °C) and acidification (ΔpCO2 ~ +1000 µatm, equivalent to ΔpH = -0.4 units), using an integrated multi-biomarker response (IBR) approach. Overall, results showed that VFX toxicity was strongly influenced by the uptake pathway, as well as by warming and acidification. More significant changes (e.g. increases surpassing 100% in lipid peroxidation, LPO, heat shock response protein content, HSP70/HSC70, and total ubiquitin content, Ub,) and higher IBR index values were observed when VFX exposure occurred via water (i.e. average IBR = 19, against 17 in VFX-feed treatment). The co-exposure to climate change-related stressors either enhanced (e.g. glutathione S-transferases activity (GST) in fish muscle was further increased by warming) or attenuated the changes elicited by VFX (e.g. vitellogenin, VTG, liver content increased with VFX feed exposure acting alone, but not when co-exposed with acidification). Yet, increased stress severity was observed when the three stressors acted simultaneously, particularly in fish exposed to VFX via water (i.e. average IBR = 21). Hence, the distinct fish tissues responses elicited by the different scenarios emphasized the relevance of performing multi-stressors ecotoxicological studies, as such approach enables a better estimation of the environmental hazards posed by pollutants in a changing ocean and, consequently, the development of strategies to mitigate them.


Assuntos
Perciformes , Cloridrato de Venlafaxina/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores , Mudança Climática , Ecotoxicologia , Concentração de Íons de Hidrogênio
3.
Environ Res ; 164: 186-196, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29501006

RESUMO

Climate change and chemical contamination are global environmental threats of growing concern for the scientific community and regulatory authorities. Yet, the impacts and interactions of both stressors (particularly ocean warming and emerging chemical contaminants) on physiological responses of marine organisms remain unclear and still require further understanding. Within this context, the main goal of this study was to assess, for the first time, the effects of warming (+ 5 °C) and accumulation of a polybrominated diphenyl ether congener (BDE-209, brominated flame retardant) through dietary exposure on energy budget of the juvenile white seabream (Diplodus sargus). Specifically, growth (G), routine metabolism (R), excretion (faecal, F and nitrogenous losses, U) and food consumption (C) were calculated to obtain the energy budget. The results demonstrated that the energy proportion spent for G dominated the mode of the energy allocation of juvenile white seabream (56.0-67.8%), especially under the combined effect of warming plus BDE-209 exposure. Under all treatments, the energy channelled for R varied around 26% and a much smaller percentage was channelled for excretion (F: 4.3-16.0% and U: 2.3-3.3%). An opposite trend to G was observed to F, where the highest percentage (16.0 ±â€¯0.9%) was found under control temperature and BDE-209 exposure via diet. In general, the parameters were significantly affected by increased temperature and flame retardant exposure, where higher levels occurred for: i) wet weight, relative growth rate, protein and ash contents under warming conditions, ii) only for O:N ratio under BDE-209 exposure via diet, and iii) for feed efficiency, ammonia excretion rate, routine metabolic rate and assimilation efficiency under the combination of both stressors. On the other hand, decreased viscerosomatic index was observed under warming and lower fat content was observed under the combined effect of both stressors. Overall, under future warming and chemical contamination conditions, fish energy budget was greatly affected, which may dictate negative cascading impacts at population and community levels. Further research combining other climate change stressors (e.g. acidification and hypoxia) and emerging chemical contaminants are needed to better understand and forecast such biological effects in a changing ocean.


Assuntos
Mudança Climática , Peixes , Retardadores de Chama , Animais , Organismos Aquáticos , Peixes/fisiologia , Aquecimento Global , Dinâmica Populacional , Temperatura
4.
Environ Res ; 162: 297-307, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29407761

RESUMO

Sea urchin represents one of the most valuable seafood product being harvested and explored for their edible part, the gonads or roe. This species is generally considered a sentinel organism for ecotoxicological studies being widely used in monitoring programs to assess coastal aquatic environments quality, because is directly exposed to anthropogenic contaminants in their habitat. In this context, the aim of this study is to evaluate the concentrations of macro (Cl, K, P, Ca, S) and trace (Zn, Br, Fe, Sr, I, Se, Rb, Cu, Cr, Ni, As, iAs, Cd, Pb, Hg) elements in Paracentrotus lividus gonads from three South West Atlantic production areas subjected to distinct environmental and anthropogenic pressures. In all studied areas, the elements profile in sea urchin gonads was Cl > K > P > Ca > S > Zn > Br > Fe > Sr > I > Rb > Cu > Se > Cr > Ni, suggesting an element guide profile with special interest for sea urchin farming development. Concerning toxic elements, the profile was the following: As > Cd > Pb > Hg > iAs. The results evidenced higher levels of Pb and Hg in open areas. Distinct area characteristics and anthropogenic pressures of production areas evidence the importance of biomonitoring contaminants, particularly toxic elements. In general, the levels of these elements were below maximum levels in foodstuffs (MLs) which pose a minimal health risk to consumers.


Assuntos
Gônadas , Paracentrotus , Oligoelementos , Animais , Monitoramento Ambiental , Gônadas/química , Paracentrotus/química , Oligoelementos/análise
5.
Environ Res ; 164: 165-172, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29499469

RESUMO

This work aimed to determine the effect of culinary practices on the contamination level and bioaccessibility of polycyclic aromatic hydrocarbons (PAHs) in seafood. The selected farmed seafood species (marine shrimp, clams and seaweed) were commercially available in Portugal. The mean concentrations of PAHs varied between 0.23 and 51.8 µg kg-1, with the lowest value being observed in raw shrimp and the highest in dried seaweed. The number of compounds detected in seaweed and clams (naphthalene, acenaphthene, fluorene, phenanthrene, benzo(b)fluoranthene and benzo(j)fluoranthene) were higher than in shrimp (fluorene and pyrene). Among the PAHs measured, fluorene was the predominant one. There was a significant interaction effect between species and culinary treatment (p < 0.05), thus boiled and dried seaweed samples presented the lowest and the highest levels of fluorene (0.13 and 1.8 µg kg-1), respectively. The daily intake of PAHs decreased with bioaccessibility, varying from 22% for benzo(k)fluoranthene (in raw clam) to 84% for phenanthrene (in steamed clam). According to the potency equivalent concentrations, screening values and bioaccessibility of PAHs, the consumption of marine shrimp, clam and seaweed is considered as safe for consumers.


Assuntos
Bivalves , Hidrocarbonetos Policíclicos Aromáticos , Animais , Exposição Dietética , Portugal , Alimentos Marinhos/análise
6.
Environ Res ; 161: 236-247, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29169098

RESUMO

Emerging chemical contaminants [e.g. toxic metals speciation, flame retardants (FRs) and perfluorinated compounds (PFCs), among others], that have not been historically recognized as pollutants nor their toxicological hazards, are increasingly more present in the marine environment. Furthermore, the effects of environmental conditions (e.g. temperature and pH) on bioaccumulation and elimination mechanisms of these emerging contaminants in marine biota have been poorly studied until now. In this context, the aim of this study was to assess, for the first time, the effect of warmer seawater temperatures (Δ = + 4°C) and lower pH levels (Δ = - 0.4 pH units), acting alone or combined, on the bioaccumulation and elimination of emerging FRs (dechloranes 602, 603 and 604, and TBBPA), inorganic arsenic (iAs), and PFCs (PFOA and PFOS) in two estuarine bivalve species (Mytilus galloprovincialis and Ruditapes philippinarum). Overall, results showed that warming alone or combined with acidification promoted the bioaccumulation of some compounds (i.e. dechloranes 602, 604, TBBPA), but also facilitated the elimination of others (i.e. iAs, TBBPA). Similarly, lower pH also resulted in higher levels of dechloranes, as well as enhanced iAs, PFOA and PFOS elimination. Data also suggests that, when both abiotic stressors are combined, bivalves' capacity to accumulate contaminants may be time-dependent, considering significantly drastic increase observed with Dec 602 and TBBPA, during the last 10 days of exposure, when compared to reference conditions. Such changes in contaminants' bioaccumulation/elimination patterns also suggest a potential increase of human health risks of some compounds, if the climate continues changing as forecasted. Therefore, this first study pointed out the urgent need for further research on the effects of abiotic conditions on emerging contaminants kinetics, to adequately estimate the potential toxicological hazards associated to these compounds and develop recommendations/regulations for their presence in seafood, considering the prevailing environmental conditions expected in tomorrow's ocean.


Assuntos
Mytilus , Temperatura , Poluentes Químicos da Água , Animais , Humanos , Concentração de Íons de Hidrogênio , Medição de Risco , Água do Mar , Poluentes Químicos da Água/farmacocinética
7.
Environ Res ; 149: 77-85, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27179934

RESUMO

Warming is an expected impact of climate change that will affect coastal areas in the future. These areas are also subjected to strong anthropogenic pressures leading to chemical contamination. Yet, the consequences of both factors for marine ecosystems, biota and consumers are still unknown. The present work aims to investigate, for the first time, the effect of temperature increase on bioaccumulation and elimination of mercury [(total mercury (THg) and methylmercury (MeHg)] in three tissues (muscle, liver, and brain) of a commercially important seafood species - European seabass (Dicentrarchus labrax). Fish were exposed to the ambient temperature currently used in seabass rearing (18°C) and to the expected ocean warming (+4°C, i.e. 22°C), as well as dietary MeHg during 28 days, followed by a depuration period of 28 days fed with a control diet. In both temperature exposures, higher MeHg contents were observed in the brain, followed by the muscle and liver. Liver registered the highest elimination percentages (EF; up to 64% in the liver, 20% in the brain, and 3% in the muscle). Overall, the results clearly indicate that a warming environment promotes MeHg bioaccumulation in all tissues (e.g. highest levels in brain: 8.1mgkg(-1) ww at 22°C against 6.2mgkg(-1) ww at 18°C after 28 days of MeHg exposure) and hampers MeHg elimination (e.g. liver EF decreases after 28 days of depuration: from 64.2% at 18°C to 50.3% at 22°C). These findings suggest that seafood safety may be compromised in a warming context, particularly for seafood species with contaminant concentrations close to the current regulatory levels. Hence, results point out the need to strengthen research in this area and to revise and/or adapt the current recommendations regarding human exposure to chemical contaminants through seafood consumption, in order to integrate the expected effects of climate change.


Assuntos
Bass/metabolismo , Exposição Ambiental , Mercúrio/metabolismo , Compostos de Metilmercúrio/metabolismo , Alimentos Marinhos/análise , Poluentes Químicos da Água/metabolismo , Animais , Encéfalo/metabolismo , Mudança Climática , Monitoramento Ambiental , Temperatura Alta , Fígado/metabolismo , Mercúrio/química , Compostos de Metilmercúrio/química , Músculos/metabolismo , Portugal , Poluentes Químicos da Água/química
8.
Environ Res ; 143(Pt B): 72-81, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26411778

RESUMO

The presence of cadmium (Cd), lead (Pb), mercury (THg), methylmercury (MeHg), arsenic (TAs), inorganic arsenic (iAs), cobalt (Co), copper (Cu), zinc (Zn), nickel (Ni), chromium (Cr) and iron (Fe) was investigated in seafood collected from European marine ecosystems subjected to strong anthropogenic pressure, i.e. hotspot areas. Different species (Mytilus galloprovincialis, n=50; Chamelea gallina, n=50; Liza aurata, n=25; Platichthys flesus, n=25; Laminaria digitata, n=15; and Saccharina latissima, n=15) sampled in Tagus estuary, Po delta, Ebro delta, western Scheldt, and in the vicinities of a fish farm area (Solund, Norway), between September and December 2013, were selected to assess metal contamination and potential risks to seafood consumers, as well as to determine the suitability of ecologically distinct organisms as bioindicators in environmental monitoring studies. Species exhibited different elemental profiles, likely as a result of their ecological strategies, metabolism and levels in the environment (i.e. seawater and sediments). Higher levels of Cd (0.15-0.94 mg kg(-1)), Pb (0.37-0.89 mg kg(-1)), Co (0.48-1.1 mg kg(-1)), Cu (4.8-8.4 mg kg(-1)), Zn (75-153 mg kg(-1)), Cr (1.0-4.5 mg kg(-1)) and Fe (283-930 mg kg(-1)) were detected in bivalve species, particularly in M. galloprovincialis from Ebro and Po deltas, whereas the highest content of Hg was found in P. flesus (0.86 mg kg(-1)). In fish species, most Hg was organic (MeHg; from 69 to 79%), whereas lower proportions of MeHg were encountered in bivalve species (between 20 and 43%). The highest levels of As were found in macroalgae species L. digitata and S. latissima (41 mg kg(-1) and 43 mg kg(-1), respectively), with iAs accounting almost 50% of the total As content in L. digitata but not with S. latissima nor in the remaining seafood samples. This work highlights that the selection of the most appropriate bioindicator species is a fundamental step in environmental monitoring of each contaminant, especially in coastal areas. Furthermore, data clearly shows that the current risk assessment and legislation solely based on total As or Hg data is limiting, as elemental speciation greatly varies according to seafood species, thus playing a key role in human exposure assessment via food.


Assuntos
Monitoramento Ambiental/métodos , Metais Pesados/análise , Alimentos Marinhos/análise , Poluentes Químicos da Água/análise , Animais , Arsenicais/análise , Bivalves/química , Europa (Continente) , Peixes/metabolismo , Cadeia Alimentar , Limite de Detecção , Metais Pesados/toxicidade , Compostos de Metilmercúrio/análise , Compostos de Metilmercúrio/toxicidade , Alimentos Marinhos/normas , Alga Marinha/química , Poluentes Químicos da Água/toxicidade
9.
Artigo em Inglês | MEDLINE | ID: mdl-24835486

RESUMO

Both climate change and biological invasions are among the most serious global environmental threats. Yet mechanisms underlying these eventual interactions remain unclear. The aim of this study was to undertake a comprehensive examination of the physiological and biochemical responses of native (Ruditapes decussatus) and alien-invasive (Ruditapes philippinarum) clams to environmental warming. We evaluated thermal tolerance limits (CTMax), routine metabolic rates (RMRs) and respective thermal sensitivity (Q10 values), critical oxygen partial pressure (Pcrit), heat shock response (HSP70/HSC70 levels), lipid peroxidation (MDA build-up) and antioxidant enzyme [glutathione-S-transferase (GST), catalase (CAT) and superoxide dismutase (SOD)] activities. Contrary to most studies that show that invasive species have a higher thermal tolerance than native congeners, here we revealed that the alien-invasive and native species had similar CTMax values. However, warming had a stronger effect on metabolism and oxidative status of the native R. decussatus, as indicated by the higher RMRs and HSP70/HSC70 and MDA levels, as well as GST, CAT and SOD activities. Moreover, we argue that the alien-invasive clams, instead of up-regulating energetically expensive cellular responses, have evolved a less demanding strategy to cope with short-term environmental (oxidative) stress-pervasive valve closure. Although efficient during stressful short-term periods to ensure isolation and guarantee longer survival, such adaptive behavioural strategy entails metabolic arrest (and the enhancement of anaerobic pathways), which to some extent will not be advantageous under the chronically warming conditions predicted in the future.


Assuntos
Bivalves/metabolismo , Mudança Climática , Oceanos e Mares , Estresse Oxidativo , Animais , Antioxidantes/metabolismo , Bivalves/genética , Bivalves/fisiologia , Catalase/metabolismo , Monitoramento Ambiental , Proteínas de Choque Térmico HSP70/biossíntese , Resposta ao Choque Térmico , Peroxidação de Lipídeos/genética , Superóxido Dismutase/metabolismo
10.
Sci Total Environ ; 920: 170989, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38365038

RESUMO

Pentabromodiphenyl ether (BDE-99) and bisphenol A (BPA) are synthetic organic compounds present in several daily use products. Due to their physicochemical properties, they are ubiquitously present in aquatic ecosystems and considered highly persistent. Recent evidence has confirmed that both emerging compounds are toxic to humans and terrestrial mammals eliciting a wide range of detrimental effects at endocrine and immune levels. However, the ecotoxicological responses that they can trigger in vertebrate marine species have not yet been established. Hence, this study aimed to investigate the ecotoxicological responses of juvenile Sparus aurata upon chronic (28 days) dietary exposure to BDE-99 and BPA (alone and combined) following an integrated multi-biomarker approach that combined fitness indicators (Fulton's K and splenosomatic indexes) with endocrine [cortisol, 17ß-estradiol (E2), 11-ketotestosterone (11-KT) concentrations] and immune (peroxidase and antiprotease activities) endpoints in fish plasma, and oxidative stress [superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) activities, and lipid peroxidation (LPO)] endpoints in the fish spleen. The mixture of BDE-99 and BPA yielded the highest IBR index value in both plasma and spleen biomarkers, therefore, suggesting that the effects of these compounds are more severe when they act together. Endocrine biomarkers were the most responsive in the three contaminated treatments. Fitness indicators were not affected by the individual nor the interactive effects of BDE-99 and BPA. These findings highlight the relevance of accounting for the interactive effects of emerging chemical contaminants and integrating responses associated with distinct biological pathways when investigating their impacts on marine life, as such a multi-biomarker approach provides a broader, more realistic and adequate perspective of challenges faced by fish in a contaminated environment.


Assuntos
Compostos Benzidrílicos , Éteres Difenil Halogenados , Fenóis , Dourada , Animais , Humanos , Dourada/metabolismo , Ecossistema , Estresse Oxidativo , Biomarcadores/metabolismo , Mamíferos/metabolismo
11.
Food Microbiol ; 36(2): 365-73, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24010618

RESUMO

The microbiological responses of two bivalves species from Tagus estuary, Venerupis pullastra (native clam) and Ruditapes philippinarum (exotic clam) were investigated during 48 h of depuration and subsequent simulated transport in semi-dry conditions at two temperatures (4 and 22 °C) until reaching 50% lethal time (LT50). Regardless of temperature and species, the maintenance of clams in water for 48 h (depuration period) did not affect LT50 during transport. R. philippinarum showed higher survival rates than V. pullastra, always reaching LT50 later, especially at 4 °C. Significant differences between clams' species were found in almost all microbiological parameters. This can be related with clams' biological activity and habitat environmental conditions since both clams do not coexist in Tagus estuary. Depuration was efficient to reduce the bacterial load, particularly Escherichia coli, but not efficient to remove Vibrio spp. In both species, the growth of Vibrio spp. was inhibited at 4 °C, whereas exponential growth occurred at 22 °C. Total viable counts significantly increased in most treatments, while E. coli counts significantly decreased to undetected levels, except for non-depurated R. philippinarum simulated transported at 4 °C. Thus, this study highlights the importance of clams depuration for at least 24 h in polluted estuarine areas, followed by transport at low temperatures (4 °C).


Assuntos
Bactérias/isolamento & purificação , Bivalves/química , Bivalves/microbiologia , Manipulação de Alimentos/métodos , Frutos do Mar/microbiologia , Animais , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bivalves/fisiologia , Temperatura Alta , Frutos do Mar/análise
12.
J Hazard Mater ; 444(Pt A): 130387, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36403442

RESUMO

Estuaries are continually threatened by anthropogenic pressures, consequently, a large group of contaminants harmful to human health affects the aquatic biota; therefore, it is necessary to monitor their quality. This study deals with the determination of a large group of compounds representing different endocrine-disrupting compounds (EDCs) classes [21 pesticides, 4 polycyclic musk fragrances, 4 UV-filters, 7 bisphenols, 6 polybrominated diphenyl ethers (PBDEs) and 8 of their methoxylated (MeO-BDEs)] in several estuarine species (fish, bivalves, crustaceans, earthworm, and macroalgae) collected seasonally along one year in two distinct areas of Tagus River estuary ("contaminated" vs. "clean" areas). The most abundant compounds found were galaxolide (HHCB) (81% positive samples; 0.04-74 ng/g ww), isoamyl 4-methoxycinnamate (IMC) (64%; 1.13-251 ng/g ww), alachlor (44%; 0.08-16 ng/g ww), and BDE-47 (36%; 0.06-2.26 ng/g ww). Polycyclic musks were the most frequent contaminants in fish (seabass, barbus, mullet, and sole) and macroalgae samples, while UV-filters were predominant in bivalves and crustaceans, and bisphenols in earthworms. Seasonal variation was verified for Σpesticides and Σmusks, with significantly higher levels in summer and autumn, whereas ΣUV-filters highest levels were found in spring and summer, and for ΣPBDEs statistically higher levels were registered in cold seasons (autumn and winter). Σbisphenols were significantly lower in spring than in the other seasons. In general, considering all species analysed in both areas, no statistically significant differences (p > 0.05) were verified between the two collection areas. Based on the estimated daily intake data, consumption of fish from this estuary is unlikely to be a human health concern, since the levels of contamination were below the toxicological threshold values. Overall, the data obtained in this study will allow regulatory authorities to identify and prioritize contaminants monitoring programs in estuaries, such as the case of bisphenol A, which was found, for the first time, in earthworm and clam species.


Assuntos
Disruptores Endócrinos , Oligoquetos , Animais , Humanos , Estuários , Estações do Ano , Oceano Atlântico , Biota , Medição de Risco
13.
Sci Total Environ ; 857(Pt 2): 159491, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36270380

RESUMO

Rising levels of atmospheric carbon dioxide (CO2) are driving ocean warming and acidification, which may negatively affect the nutritional quality and physiological performance of commercially important fish species. Thus, this study aimed to evaluate the effects of ocean acidification (OA; ΔpH = -0.3 units equivalent to ΔpCO2 ~ +600 µatm) and warming (OW; ΔT = +4 °C) (and combined, OAW) on the proximate composition, fitness and energy budget of juvenile Senegalese sole (Solea senegalensis). After an exposure period of 75 days, growth (G), metabolism (R) and excretion (faecal, F and nitrogenous losses, U) were assessed to calculate the energy intake (C). Biometric and viscera weight data were also registered to determine animal fitness. Overall, the proximate composition and gross energy were not significantly affected by acidification and warming (alone or in combination). Weight gain, maximum and standard metabolic rates (MMR and SMR, respectively), aerobic scope (AS) and C were significantly higher in fish subjected to OA, OW and OAW than in CTR conditions. Furthermore, the highest relative growth rates (RGR), specific growth rates in terms of wet weight (SGRw) and protein (SGRp), as well as feed efficiencies (FE) occurred in fish submitted to OW and OAW. On the other hand, fish exposed to CTR conditions had significantly higher feed conversion ratio (FCR) and ammonia excretion rate (AER) than those exposed to simulated stressors. Regarding energy distribution, the highest fraction was generally allocated to growth (48-63 %), followed by excretion through faeces (36-51 %), respiration (approximately 1 %) and ammonia excretion (0.1-0.2 %) in all treatments. Therefore, ocean warming and acidification can trigger physiological responses in juvenile Senegalese sole, particularly in their energy budget, which can affect the energy flow and allocation of its population. However, and in general, this species seems highly resilient to these predicted ocean climate change stressors.


Assuntos
Linguados , Água do Mar , Animais , Água do Mar/química , Concentração de Íons de Hidrogênio , Amônia/toxicidade , Oceanos e Mares , Temperatura
14.
Sci Total Environ ; 881: 163400, 2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37054799

RESUMO

Decabromodiphenyl-ether (BDE-209) is a persistent organic pollutant ubiquitously found in marine environments worldwide. Even though this emerging chemical contaminant is described as highly toxic, bioaccumulative and biomagnifiable, limited studies have addressed the ecotoxicological implications associated with its exposure in non-target marine organisms, particularly from a behavioural standpoint. Alongside, seawater acidification and warming have been intensifying their impacts on marine ecosystems over the years, compromising species welfare and survival. BDE-209 exposure as well as seawater acidification and warming are known to affect fish behaviour, but information regarding their interactive effects is not available. In this study, long-term effects of BDE-209 contamination, seawater acidification and warming were studied on different behavioural traits of Diplodus sargus juveniles. Our results showed that D. sargus exhibited a marked sensitivity in all the behaviour responses after dietary exposure to BDE-209. Fish exposed to BDE-209 alone revealed lower awareness of a risky situation, increased activity, less time spent within the shoal, and reversed lateralization when compared to fish from the Control treatment. However, when acidification and/or warming were added to the equation, behavioural patterns were overall altered. Fish exposed to acidification alone exhibited increased anxiety, being less active, spending more time within the shoal, while presenting a reversed lateralization. Finally, fish exposed to warming alone were more anxious and spent more time within the shoal compared to those of the Control treatment. These novel findings not only confirm the neurotoxicological attributes of brominated flame retardants (like BDE-209), but also highlight the relevance of accounting for the effects of abiotic variables (e.g. pH and seawater temperature) when investigating the impacts of environmental contaminants on marine life.


Assuntos
Perciformes , Dourada , Animais , Mudança Climática , Exposição Dietética , Ecossistema
15.
Int J Food Sci Nutr ; 63(7): 853-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22574998

RESUMO

Farmed gilthead sea bream (Sparus aurata), European sea bass (Dicentrarchus labrax), rainbow trout (Oncorhynchus mykiss) and turbot (Psetta maxima) produced in Portugal were analysed in order to characterize their elemental composition. Atomic absorption (flame and cold vapour) and molecular absorption spectrometry techniques were used to determine all the studied elements. Similar patterns of macro, trace and ultra trace elements were observed for all fish species. The main elements were potassium (K), sodium (Na), phosphorus (P), magnesium (Mg) and calcium (Ca), followed by zinc (Zn), iron (Fe), copper (Cu), chromium (Cr), manganese (Mn) and nickel (Ni). Cadmium (Cd), mercury (Hg) and lead (Pb) concentrations, obtained in this study, allow concluding that these species do not present a hazard for human consumption. In addition, they contain almost all essential elements at concentrations sufficient to suit the dietary reference intake. Nevertheless, P. maxima nutritious trace element content is relatively low compared with the other three species.


Assuntos
Aquicultura , Bass , Linguados , Contaminação de Alimentos , Oncorhynchus mykiss , Dourada , Alimentos Marinhos/análise , Animais , Bass/crescimento & desenvolvimento , Linguados/crescimento & desenvolvimento , Humanos , Metais Pesados/análise , Valor Nutritivo , Oncorhynchus mykiss/crescimento & desenvolvimento , Portugal , Dourada/crescimento & desenvolvimento , Alimentos Marinhos/efeitos adversos , Espectrofotometria Atômica , Oligoelementos/análise
16.
J Sci Food Agric ; 92(7): 1545-53, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22577659

RESUMO

BACKGROUND: Black scabbard fish (Aphanopus carbo Lowe, 1839) is a deep-water fish resource that is highly appreciated in southern European countries and can accumulate high levels of mercury in the muscle. Currently, European legislation establishes limits for the presence of toxic contaminants in raw seafood, despite these products are generally cooked before consumption. In addition, there is still a lack of information concerning the nutritional quality and contaminants available in cooked products. Therefore, the aim of this study was to assess the effect of sex, maturation stages and three common cooking practices (steaming, grilling and frying) on the toxic elements (Hg, As, Cd and Pb) and nutritional value (chemical, elemental and fatty acid composition) of black scabbard fish. RESULTS: Few variations occurred between sexes and maturation stages, particularly in fatty acid and elemental content. Concerning cooked black scabbard fish, the greatest differences occurred in fried and grilled samples, attaining higher Hg levels, whereas steamed fish composition was closer to raw black scabbard fish. CONCLUSION: Raw and cooked black scabbard fish can be considered as a very good source of essential nutrients such as n-3 PUFA, proteins, macro and trace elements. Yet, when the fish is grilled, the Hg content may be above the limits set by EU. Considering the alterations occurred during the cooking processes, steaming seems the best procedure to cook this species.


Assuntos
Culinária/métodos , Dieta , Ácidos Graxos/análise , Peixes , Inocuidade dos Alimentos , Metais Pesados/análise , Alimentos Marinhos/análise , Fatores Etários , Animais , Humanos , Valor Nutritivo , Fatores Sexuais
17.
Sci Total Environ ; 838(Pt 2): 155814, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35588845

RESUMO

Exposure of aquatic environments to emerging contaminants is a global issue, special relevant in many estuaries due to impacts from anthropogenic activity. The aim of this work was to evaluate thirty-seven endocrine disruptor chemicals (EDCs) from four different classes (pesticides, bisphenols, polycyclic musks and UV-filters) in water and sediment samples collected during one-year in the estuaries of Tagus and Douro Rivers located into the NE Atlantic Ocean coast. EDCs analysis was achieved afterward validation of a gas-chromatography mass spectrometry (GC-MS) method using Dispersive Liquid-Liquid Microextraction (DLLME) as extraction procedure for water samples, and Quick, Easy, Cheap, Efficient, Rugged and Safe (QuEChERS) combined with DLLME for sediments. Tagus estuary presented higher levels of contamination with pesticide residues and bisphenols (BPs) than the Douro estuary in both water and sediment samples. Contrariwise, levels and frequency of polycyclic musks (PCMs) and UV-filters (UVF) were slightly higher in Douro estuary. Levels of pesticide residues in both sediment and water samples, and levels of PCMs and UVF in water samples were higher in warmer seasons (summer and spring) than in colder ones (winter and autumn). The opposite was found in what respect levels of BPs in water and sediment samples, and PCMs and UVF levels in sediment samples. Although the levels found for each contaminant are low, usually in the order of a few ng/mL(g), the presence of a high number of toxic compounds is a source of concern and requires constant monitoring.


Assuntos
Disruptores Endócrinos , Estuários , Poluentes Químicos da Água , Oceano Atlântico , Disruptores Endócrinos/análise , Cromatografia Gasosa-Espectrometria de Massas , Resíduos de Praguicidas/análise , Rios/química , Estações do Ano , Poluentes Químicos da Água/análise
18.
Conserv Physiol ; 10(1): coac048, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35875680

RESUMO

A mechanistic model based on Dynamic Energy Budget (DEB) theory was developed to predict the combined effects of ocean warming, acidification and decreased food availability on growth and reproduction of three commercially important marine fish species: white seabream (Diplodus sargus), zebra seabream (Diplodus cervinus) and Senegalese sole (Solea senegalensis). Model simulations used a parameter set for each species, estimated by the Add-my-Pet method using data from laboratory experiments complemented with bibliographic sources. An acidification stress factor was added as a modifier of the somatic maintenance costs and estimated for each species to quantify the effect of a decrease in pH from 8.0 to 7.4 (white seabream) or 7.7 (zebra seabream and Senegalese sole). The model was used to project total length of individuals along their usual lifespan and number of eggs produced by an adult individual within one year, under different climate change scenarios for the end of the 21st century. For the Intergovernmental Panel on Climate Change SSP5-8.5, ocean warming led to higher growth rates during the first years of development, as well as an increase of 32-34% in egg production, for the three species. Ocean acidification contributed to reduced growth for white seabream and Senegalese sole and a small increase for zebra seabream, as well as a decrease in egg production of 48-52% and 14-33% for white seabream and Senegalese sole, respectively, and an increase of 4-5% for zebra seabream. The combined effect of ocean warming and acidification is strongly dependent on the decrease of food availability, which leads to significant reduction in growth and egg production. This is the first study to assess the combined effects of ocean warming and acidification using DEB models on fish, therefore, further research is needed for a better understanding of these climate change-related effects among different taxonomic groups and species.

19.
Food Chem ; 397: 133780, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-35917781

RESUMO

Fish biofortification with natural ingredients like iodine-rich macroalgae and selenized-yeast is an excellent strategy to enhance the nutritional quality of farmed fish. This study aimed to assess the effect of frozen storage during 12-months on physicochemical quality of biofortified seabream (Sparus aurata) and carp (Cyprinus carpio). Frozen storage reduced iodine content in biofortified seabream fillets (17%), as well as selenium content in biofortified carp fillets (24%). Yet, biofortified fillets still presented enhanced iodine and selenium contents at the end of the storage period. Increased lipid oxidation (3.45 mg MDA kg-1 for seabream and 2.41 mg MDA kg-1 for carp) and decreased water holding capacity (23-29% for seabream and 14-23% for carp) was observed during storage, whereas major changes in colour and texture occurred after 45 days (seabream) and 225 days (carp) of storage. In general, biofortified fish fillets maintained their nutritional value and quality after 360 days of frozen storage.


Assuntos
Carpas , Iodo , Perciformes , Dourada , Selênio , Animais , Alimentos Marinhos/análise
20.
Food Chem Toxicol ; 152: 112218, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33882300

RESUMO

Fish fortification with iodine-rich macroalgae (Laminaria digitata) and Selenium-rich yeast is expected to promote nutritional added value of this crucial food item, contributing to a healthy and balanced diet for consumers. However, it is not known if steaming can affect these nutrient levels in fortified fish. The present study evaluates the effect of steaming on nutrients contents in fortified farmed gilthead seabream (Sparus aurata) and common carp (Cyprinus carpio). Fortified seabream presented enhanced I, Se and Fe contents, whereas fortified carp presented enhanced I, Se and Zn contents. Steaming resulted in increased I and Se contents in fortified seabream, and increased Fe and Zn levels in fortified carp, with higher elements true retention values (TRVs >90%). The consumption of 150 g of steamed fortified seabream contributes to a significant daily intake (DI) of I (up to 12%) and Se (up to >100%). On the other hand, steamed fortified carp contributes to 19-23% of I DI and 30%-71% of Se DI. These results demonstrate that steaming is a healthy cooking method, maintaining the enhanced nutritional quality of fortified fish. Moreover, the present fortification strategy is a promising solution to develop high-quality farmed fish products to overcome nutritional deficiencies.


Assuntos
Culinária/métodos , Alimentos Fortificados/análise , Iodo/análise , Valor Nutritivo , Alimentos Marinhos/análise , Selênio/análise , Animais , Aquicultura , Carpas , Temperatura Alta , Dourada , Alga Marinha , Água/química , Leveduras
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa