Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Genes Dev ; 23(6): 694-707, 2009 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-19299559

RESUMO

Rhabdomyosarcomas are characterized by expression of myogenic specification genes, such as MyoD and/or Myf5, and some muscle structural genes in a population of cells that continues to replicate. Because MyoD is sufficient to induce terminal differentiation in a variety of cell types, we have sought to determine the molecular mechanisms that prevent MyoD activity in human embryonal rhabdomyosarcoma cells. In this study, we show that a combination of inhibitory Musculin:E-protein complexes and a novel splice form of E2A compete with MyoD for the generation of active full-length E-protein:MyoD heterodimers. A forced heterodimer between MyoD and the full-length E12 robustly restores differentiation in rhabdomyosarcoma cells and broadly suppresses multiple inhibitory pathways. Our studies indicate that rhabdomyosarcomas represent an arrested progress through a normal transitional state that is regulated by the relative abundance of heterodimers between MyoD and the full-length E2A proteins. The demonstration that multiple inhibitory mechanisms can be suppressed and myogenic differentiation can be induced in the RD rhabdomyosarcomas by increasing the abundance of MyoD:E-protein heterodimers suggests a central integrating function that can be targeted to force differentiation in muscle cancer cells.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Diferenciação Celular/fisiologia , Proteína MyoD/fisiologia , Mioblastos/citologia , Rabdomiossarcoma/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Dados de Sequência Molecular , Mioblastos/fisiologia , Multimerização Proteica , Processamento de Proteína , Rabdomiossarcoma/patologia
2.
J Cell Biol ; 175(1): 77-85, 2006 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-17030984

RESUMO

Terminal differentiation of distinct cell types requires the transcriptional activation of differentiation-specific genes and the suppression of genes associated with the precursor cell. For example, the expression of utrophin (Utrn) is suppressed during skeletal muscle differentiation, and it is replaced at the sarcolemma by the related dystrophin protein. The MyoD transcription factor directly activates the expression of a large number of skeletal muscle genes, but also suppresses the expression of many genes. To characterize a mechanism of MyoD-mediated suppression of gene expression, we investigated two genes that are suppressed in fibroblasts converted to skeletal muscle by MyoD, follistatin-like 1 (Fstl1) and Utrn. MyoD directly activates the expression of a muscle-specific microRNA (miRNA), miR-206, which targets sequences in the Fstl1 and Utrn RNA, and these sequences are sufficient to suppress gene expression in the presence of miR-206. These findings demonstrate that MyoD, in addition to activating muscle-specific genes, induces miRNAs that repress gene expression during skeletal muscle differentiation.


Assuntos
Proteínas Relacionadas à Folistatina/genética , Regulação da Expressão Gênica , MicroRNAs/genética , Proteína MyoD/fisiologia , Utrofina/genética , Animais , Diferenciação Celular/genética , Células Cultivadas , Proteínas Relacionadas à Folistatina/metabolismo , Camundongos , MicroRNAs/metabolismo , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Utrofina/metabolismo
3.
J Struct Funct Genomics ; 11(1): 91-100, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20364333

RESUMO

Structural genomics discovery projects require ready access to both X-ray diffraction and NMR spectroscopy which support the collection of experimental data needed to solve large numbers of novel protein structures. The most productive X-ray crystal structure determination laboratories make extensive use of tunable synchrotron X-ray light to solve novel structures by anomalous diffraction methods. This requires that frozen cryo-protected crystals be shipped to large multi acre synchrotron facilities for data collection. In this paper we report on the development and use of the first laboratory-scale synchrotron light source capable of performing many of the state-of-the-art synchrotron applications in X-ray science. This Compact Light Source is a first-in-class device that uses inverse Compton scattering to generate X-rays of sufficient flux, tunable wavelength and beam size to allow high-resolution X-ray diffraction data collection from protein crystals. We report on benchmarking tests of X-ray diffraction data collection with hen egg white lysozyme, and the successful high-resolution X-ray structure determination of the Glycine cleavage system protein H from Mycobacterium tuberculosis using diffraction data collected with the Compact Light Source X-ray beam.


Assuntos
Proteínas/química , Difração de Raios X/métodos , Aminoácido Oxirredutases , Proteínas de Transporte , Proteína H do Complexo Glicina Descarboxilase , Complexos Multienzimáticos , Muramidase , Mycobacterium tuberculosis/química , Síncrotrons , Transferases , Difração de Raios X/instrumentação , Raios X
4.
Mol Cell ; 20(3): 483-9, 2005 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-16285929

RESUMO

Prior studies of the DM1 locus have shown that the CTG repeats are a component of a CTCF-dependent insulator element and that repeat expansion results in conversion of the region to heterochromatin. We now show that the DM1 insulator is maintained in a local heterochromatin context: an antisense transcript emanating from the adjacent SIX5 regulatory region extends into the insulator element and is converted into 21 nucleotide (nt) fragments with associated regional histone H3 lysine 9 (H3-K9) methylation and HP1gamma recruitment that is embedded within a region of euchromatin-associated H3 lysine 4 (H3-K4) methylation. CTCF restricts the extent of the antisense RNA at the wild-type (wt) DM1 locus and constrains the H3-K9 methylation to the nucleosome associated with the CTG repeat, whereas the expanded allele in congenital DM1 is associated with loss of CTCF binding, spread of heterochromatin, and regional CpG methylation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Heterocromatina/metabolismo , Locos de Características Quantitativas/genética , RNA Antissenso/biossíntese , Proteínas Repressoras/metabolismo , Transcrição Gênica/genética , Repetições de Trinucleotídeos/genética , Fator de Ligação a CCCTC , Células Cultivadas , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/genética , Fibroblastos/metabolismo , Histonas/genética , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Elementos Isolantes/genética , Metilação , Regiões Promotoras Genéticas/genética , Ligação Proteica , RNA Antissenso/genética , Proteínas Repressoras/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa