Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(13)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37443891

RESUMO

Multidisciplinary approaches to conserve threatened species are required to curb biodiversity loss. Globally, amphibians are facing the most severe declines of any vertebrate class. In response, conservation breeding programs have been established in a growing number of amphibian species as a safeguard against further extinction. One of the main challenges to the long-term success of conservation breeding programs is the maintenance of genetic diversity, which, if lost, poses threats to the viability and adaptive potential of at-risk populations. Integrating reproductive technologies into conservation breeding programs can greatly assist genetic management and facilitate genetic exchange between captive and wild populations, as well as reinvigorate genetic diversity from expired genotypes. The generation of offspring produced via assisted fertilisation using frozen-thawed sperm has been achieved in a small but growing number of amphibian species and is poised to be a valuable tool for the genetic management of many more threatened species globally. This review discusses the role of sperm storage in amphibian conservation, presents the state of current technologies for the short-term cold storage and cryopreservation of amphibian sperm, and discusses the generation of cryo-derived offspring.

2.
Ecol Evol ; 12(10): e9387, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36203626

RESUMO

Evolutionary theory predicts that selection will favor phenotypic plasticity in sperm traits that maximize fertilization success in dynamic fertilization environments. In species with external fertilization, osmolality of the fertilization medium is known to play a critical role in activating sperm motility, but evidence for osmotic-induced sperm plasticity is limited to euryhaline fish and marine invertebrates. Whether this capacity extends to freshwater taxa remains unknown. Here, we provide the first test for plasticity in sperm-motility activation in response to osmotic environment in an anuran amphibian. Male common eastern froglets (Crinia signifera) were acclimated to either low (0 mOsmol kg-1) or high (50 mOsmol kg-1) environmental osmolality, and using a split-sample experimental design, sperm were activated across a range of osmolality treatments (0, 25, 50, 75, 100, and 200 ± 2 mOsmol kg-1). Unexpectedly, there was no detectable shift in the optimal osmolality for sperm-motility activation after approximately 13 weeks of acclimation (a period reflecting the duration of the winter breeding season). However, in both the low and high acclimation treatments, the optimal osmolality for sperm-motility activation mirrored the osmolality at the natural breeding site, indicating a phenotypic match to the local environment. Previously it has been shown that C. signifera display among-population covariation between environmental osmolality and sperm performance. Coupled with this finding, the results of the present study suggest that inter-population differences reflect genetic divergence and local adaptation. We discuss the need for experimental tests of osmotic-induced sperm plasticity in more freshwater taxa to better understand the environmental and evolutionary contexts favoring adaptive plasticity in sperm-motility activation.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa