Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Eur J Immunol ; 51(2): 342-353, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33169379

RESUMO

The immunological synapse is a transient junction that occurs when the plasma membrane of a T cell comes in close contact with an APC after recognizing a peptide from the antigen-MHC. The interaction starts when CRAC channels embedded in the T cell membrane open, flowing calcium ions into the cell. To counterbalance the ion influx and subsequent depolarization, Kv 1.3 and KCa3.1 channels are recruited to the immunological synapse, increasing the extracellular K+ concentration. These processes are crucial as they initiate gene expression that drives T cell activation and proliferation. The T cell-specific function of the K2P channel family member TASK2 channels and their role in autoimmune processes remains unclear. Using mass spectrometry analysis together with epifluorescence and super-resolution single-molecule localization microscopy, we identified TASK2 channels as novel players recruited to the immunological synapse upon stimulation. TASK2 localizes at the immunological synapse, upon stimulation with CD3 antibodies, likely interacting with these molecules. Our findings suggest that, together with Kv 1.3 and KCa3.1 channels, TASK2 channels contribute to the proper functioning of the immunological synapse, and represent an interesting treatment target for T cell-mediated autoimmune disorders.


Assuntos
Sinapses Imunológicas/imunologia , Canais de Potássio de Domínios Poros em Tandem/imunologia , Animais , Doenças Autoimunes/imunologia , Complexo CD3/imunologia , Cálcio/imunologia , Linhagem Celular Tumoral , Membrana Celular/imunologia , Células Cultivadas , Feminino , Expressão Gênica/imunologia , Humanos , Canais de Potássio Ativados por Cálcio de Condutância Intermediária/imunologia , Células Jurkat , Canal de Potássio Kv1.3/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia
2.
Biochim Biophys Acta ; 1828(2): 699-707, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23041580

RESUMO

Many functions of T lymphocytes are closely related to cell volume homeostasis and regulation, which utilize a complex network of membrane channels for anions and cations. Among the various potassium channels, the voltage-gated K(V)1.3 is well known to contribute greatly to the osmoregulation and particularly to the potassium release during the regulatory volume decrease (RVD) of T cells faced with hypotonic environment. Here we address a putative role of the newly identified two-pore domain (K(2P)) channels in the RVD of human CD4(+) T lymphocytes, using a series of potent well known channel blockers. In the present study, the pharmacological profiles of RVD inhibition revealed K(2P)5.1 and K(2P)18.1 as the most important K(2P) channels involved in the RVD of both naïve and stimulated T cells. The impact of chemical inhibition of K(2P)5.1 and K(2P)18.1 on the RVD was comparable to that of K(V)1.3. K(2P)9.1 also notably contributed to the RVD of T cells but the extent of this contribution and its dependence on the activation status could not be unambiguously resolved. In summary, our data provide first evidence that the RVD-related potassium efflux from human T lymphocytes relies on K(2P) channels.


Assuntos
Canais de Potássio de Domínios Poros em Tandem/química , Linfócitos T/metabolismo , Biofísica/métodos , Linfócitos T CD4-Positivos/citologia , Eletrofisiologia/métodos , Homeostase , Humanos , Inflamação , Íons , Microscopia de Vídeo/métodos , Osmose , Estrutura Terciária de Proteína , Receptores de Antígenos de Linfócitos T/metabolismo , Fatores de Tempo
3.
Biochim Biophys Acta ; 1808(8): 2036-44, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21575593

RESUMO

A variety of ion channels are supposed to orchestrate the homoeostatic volume regulation in T lymphocytes. However, the relative contribution of different potassium channels to the osmotic volume regulation and in particular to the regulatory volume decrease (RVD) in T cells is far from clear. This study explores a putative role of the newly identified K(2P) channels (TASK1, TASK2, TASK3 and TRESK) along with the voltage-gated potassium channel K(V)1.3 and the calcium-activated potassium channel K(Ca)3.1 in the RVD of murine T lymphocytes, using genetic and pharmacological approaches. K(2P) channel knockouts exerted profound effects on the osmotic properties of murine T lymphocytes, as revealed by reduced water and RVD-related solute permeabilities. Moreover, both genetic and pharmacological data proved a key role of K(V)1.3 and TASK2 channels in the RVD of murine T cells exposed to hypotonic saline. Our experiments demonstrate a leading role of potassium channels in the osmoregulation of T lymphocytes under different conditions. In summary, the present study sheds new light on the complex and partially redundant network of potassium channels involved in the basic physiological process of the cellular volume homeostasis and extends the repertoire of potassium channels by the family of K(2P) channels.


Assuntos
Tamanho Celular , Canal de Potássio Kv1.3/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Linfócitos T/metabolismo , Equilíbrio Hidroeletrolítico , Animais , Tamanho Celular/efeitos dos fármacos , Células Cultivadas , Soluções Hipotônicas , Canal de Potássio Kv1.3/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Canais de Potássio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/antagonistas & inibidores , Canais de Potássio de Domínios Poros em Tandem/deficiência , Canais de Potássio de Domínios Poros em Tandem/genética , Solução Salina Hipertônica , Linfócitos T/efeitos dos fármacos , Fatores de Tempo , Equilíbrio Hidroeletrolítico/efeitos dos fármacos
4.
Biochim Biophys Acta ; 1788(9): 1841-50, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19560440

RESUMO

The present study explores the impact of the molecular size on the permeation of low-molecular-weight polyethylene glycols (PEG200-1500) through the plasma membrane of Jurkat cells under iso- and hypotonic conditions. To this end, we analyzed the cell volume responses to PEG-substituted solutions of different osmolalities (100-300 mOsm) using video microscopy. In parallel experiments, the osmotically induced changes in the membrane capacitance and cytosolic conductivity were measured by electrorotation (ROT). Upon moderate swelling in slightly hypotonic solutions (200 mOsm), the lymphocyte membrane remained impermeable to PEG300-1500, which allowed the cells to accomplish regulatory volume decrease (RVD). During RVD, lymphocytes released intracellular electrolytes through the swelling-activated pathways, as proved by a decrease of the cytosolic conductivity measured by electrorotation. RVD also occurred in strongly hypotonic solutions (100 mOsm) of PEG600-1500, whereas 100 mOsm solutions of PEG300-400 inhibited RVD in Jurkat cells. These findings suggest that extensive hypotonic swelling rendered the cell membrane highly permeable to PEG300-400, but not to PEG600-1500. The swelling-activated channels conducting PEG300-400 were inserted into the plasma membrane from cytosolic vesicles via swelling-mediated exocytosis, as suggested by an increase of the whole cell capacitance. Using the hydrodynamic radii R(h) of PEGs (determined by viscosimetry), the observed size-selectivity of membrane permeation yielded an estimate of approximately 0.74 nm for the cut-off radius of the swelling-activated channel for organic osmolytes. Unlike PEG300-1500, the smallest PEG (PEG200, R(h)=0.5 nm) permeated the lymphocyte membrane under isotonic conditions thus leading to a continuous isotonic swelling. The results are of interest for biotechnology and biomedicine, where PEGs are widely used for cryopreservation of cells and tissues.


Assuntos
Permeabilidade da Membrana Celular/efeitos dos fármacos , Canais Iônicos/fisiologia , Linfócitos/fisiologia , Tamanho Celular/efeitos dos fármacos , Eletrofisiologia , Humanos , Células Jurkat , Linfócitos/citologia , Concentração Osmolar , Polietilenoglicóis/metabolismo
5.
PLoS One ; 10(3): e0119990, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25756525

RESUMO

Swelling-activated pathways for myo-inositol, one of the most abundant organic osmolytes in mammalian cells, have not yet been identified. The present study explores the SLC5A3 protein as a possible transporter of myo-inositol in hyponically swollen HEK293 cells. To address this issue, we examined the relationship between the hypotonicity-induced changes in plasma membrane permeability to myo-inositol P ino [m/s] and expression/localization of SLC5A3. P ino values were determined by cell volumetry over a wide tonicity range (100-275 mOsm) in myo-inositol-substituted solutions. While being negligible under mild hypotonicity (200-275 mOsm), P ino grew rapidly at osmolalities below 200 mOsm to reach a maximum of ∼ 3 nm/s at 100-125 mOsm, as indicated by fast cell swelling due to myo-inositol influx. The increase in P ino resulted most likely from the hypotonicity-mediated incorporation of cytosolic SLC5A3 into the plasma membrane, as revealed by confocal fluorescence microscopy of cells expressing EGFP-tagged SLC5A3 and super-resolution imaging of immunostained SLC5A3 by direct stochastic optical reconstruction microscopy (dSTORM). dSTORM in hypotonic cells revealed a surface density of membrane-associated SLC5A3 proteins of 200-2000 localizations/µm2. Assuming SLC5A3 to be the major path for myo-inositol, a turnover rate of 80-800 myo-inositol molecules per second for a single transporter protein was estimated from combined volumetric and dSTORM data. Hypotonic stress also caused a significant upregulation of SLC5A3 gene expression as detected by semiquantitative RT-PCR and Western blot analysis. In summary, our data provide first evidence for swelling-mediated activation of SLC5A3 thus suggesting a functional role of this transporter in hypotonic volume regulation of mammalian cells.


Assuntos
Expressão Gênica , Proteínas de Choque Térmico/metabolismo , Simportadores/metabolismo , Transporte Biológico , Tamanho Celular , Células HEK293 , Proteínas de Choque Térmico/genética , Humanos , Inositol/metabolismo , Microscopia Confocal , Pressão Osmótica , Transporte Proteico , Simportadores/genética , Ativação Transcricional , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa