Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
J Exp Bot ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38634646

RESUMO

Hypoallometric (slope<1) scaling between metabolic rate and body mass is often regarded as near-universal across organisms. However, there are compelling reasons to question hypoallometric scaling in woody plants, where metabolic rate=leaf area. This leaf area must provide carbon to the metabolically active sapwood volume (VMASW). Within populations of a species, variants in which VMASW increases per unit leaf area with height growth (e.g. ⅔ or ¾ scaling) would have proportionally less carbon for growth and reproduction as they grow taller. Therefore, selection should favor individuals in which, as they grow taller, leaf area scales isometrically with shoot VMASW (slope=1). Using tetrazolium staining, we measured total VMASW and total leaf area (LAtot) across 22 individuals of Ricinus communis and confirmed that leaf area scales isometrically with VMASW, and that VMASW is much smaller than total sapwood volume. With the potential of the LAtot-VMASW relationship to shape factors as diverse as the crown area-stem diameter relationship, conduit diameter scaling, reproductive output, and drought-induced mortality, our work suggests that the notion that sapwood increases per unit leaf area with height growth requires revision.

2.
Ann Bot ; 134(1): 19-42, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38634673

RESUMO

BACKGROUND: The mechanisms leading to dieback and death of trees under drought remain unclear. To gain an understanding of these mechanisms, addressing major empirical gaps regarding tree structure-function relations remains essential. SCOPE: We give reasons to think that a central factor shaping plant form and function is selection simultaneously favouring constant leaf-specific conductance with height growth and isometric (1:1) scaling between leaf area and the volume of metabolically active sink tissues ('sapwood'). Sapwood volume-leaf area isometry implies that per-leaf area sapwood volumes become transversely narrower with height growth; we call this 'stretching'. Stretching means that selection must favour increases in permeability above and beyond that afforded by tip-to-base conduit widening ("ultra-widening permeability"), via fewer and wider vessels or tracheids with larger pits or larger margo openings. Leaf area-metabolically active sink tissue isometry would mean that it is unlikely that larger trees die during drought because of carbon starvation due to greater sink-source relationships as compared to shorter plants. Instead, an increase in permeability is most plausibly associated with greater risk of embolism, and this seems a more probable explanation of the preferential vulnerability of larger trees to climate change-induced drought. Other implications of selection favouring constant per-leaf area sapwood construction and maintenance costs are departure from the da Vinci rule expectation of similar sapwood areas across branching orders, and that extensive conduit furcation in the stem seems unlikely. CONCLUSIONS: Because all these considerations impact the likelihood of vulnerability to hydraulic failure versus carbon starvation, both implicated as key suspects in forest mortality, we suggest that these predictions represent essential priorities for empirical testing.


Assuntos
Árvores , Árvores/fisiologia , Árvores/crescimento & desenvolvimento , Árvores/anatomia & histologia , Folhas de Planta/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/crescimento & desenvolvimento , Permeabilidade , Secas , Modelos Biológicos , Madeira/fisiologia , Madeira/anatomia & histologia , Água/fisiologia , Água/metabolismo
3.
Proc Natl Acad Sci U S A ; 118(22)2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34039710

RESUMO

Shaping global water and carbon cycles, plants lift water from roots to leaves through xylem conduits. The importance of xylem water conduction makes it crucial to understand how natural selection deploys conduit diameters within and across plants. Wider conduits transport more water but are likely more vulnerable to conduction-blocking gas embolisms and cost more for a plant to build, a tension necessarily shaping xylem conduit diameters along plant stems. We build on this expectation to present the Widened Pipe Model (WPM) of plant hydraulic evolution, testing it against a global dataset. The WPM predicts that xylem conduits should be narrowest at the stem tips, widening quickly before plateauing toward the stem base. This universal profile emerges from Pareto modeling of a trade-off between just two competing vectors of natural selection: one favoring rapid widening of conduits tip to base, minimizing hydraulic resistance, and another favoring slow widening of conduits, minimizing carbon cost and embolism risk. Our data spanning terrestrial plant orders, life forms, habitats, and sizes conform closely to WPM predictions. The WPM highlights carbon economy as a powerful vector of natural selection shaping plant function. It further implies that factors that cause resistance in plant conductive systems, such as conduit pit membrane resistance, should scale in exact harmony with tip-to-base conduit widening. Furthermore, the WPM implies that alterations in the environments of individual plants should lead to changes in plant height, for example, shedding terminal branches and resprouting at lower height under drier climates, thus achieving narrower and potentially more embolism-resistant conduits.


Assuntos
Evolução Biológica , Modelos Biológicos , Fenômenos Fisiológicos Vegetais , Água/fisiologia , Xilema/anatomia & histologia
4.
New Phytol ; 229(4): 1877-1893, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32984967

RESUMO

In the stems of terrestrial vascular plants studied to date, the diameter of xylem water-conducting conduits D widens predictably with distance from the stem tip L approximating D âˆ Lb , with b ≈ 0.2. Because conduit diameter is central for conductance, it is essential to understand the cause of this remarkably pervasive pattern. We give reason to suspect that tip-to-base conduit widening is an adaptation, favored by natural selection because widening helps minimize the increase in hydraulic resistance that would otherwise occur as an individual stem grows longer and conductive path length increases. Evidence consistent with adaptation includes optimality models that predict the 0.2 exponent. The fact that this prediction can be made with a simple model of a single capillary, omitting much biological detail, itself makes numerous important predictions, e.g. that pit resistance must scale isometrically with conduit resistance. The idea that tip-to-base conduit widening has a nonadaptive cause, with temperature, drought, or turgor limiting the conduit diameters that plants are able to produce, is less consistent with the data than an adaptive explanation. We identify empirical priorities for testing the cause of tip-to-base conduit widening and underscore the need to study plant hydraulic systems leaf to root as integrated wholes.


Assuntos
Aclimatação , Xilema , Adaptação Fisiológica , Secas , Folhas de Planta , Caules de Planta , Água
5.
Proc Natl Acad Sci U S A ; 115(29): 7551-7556, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-29967148

RESUMO

Understanding how plants survive drought and cold is increasingly important as plants worldwide experience dieback with drought in moist places and grow taller with warming in cold ones. Crucial in plant climate adaptation are the diameters of water-transporting conduits. Sampling 537 species across climate zones dominated by angiosperms, we find that plant size is unambiguously the main driver of conduit diameter variation. And because taller plants have wider conduits, and wider conduits within species are more vulnerable to conduction-blocking embolisms, taller conspecifics should be more vulnerable than shorter ones, a prediction we confirm with a plantation experiment. As a result, maximum plant size should be short under drought and cold, which cause embolism, or increase if these pressures relax. That conduit diameter and embolism vulnerability are inseparably related to plant size helps explain why factors that interact with conduit diameter, such as drought or warming, are altering plant heights worldwide.


Assuntos
Aclimatação , Temperatura Baixa , Magnoliopsida/crescimento & desenvolvimento , Tundra , Desidratação
6.
New Phytol ; 227(4): 1081-1096, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32259280

RESUMO

Tree responses to altered water availability range from immediate (e.g. stomatal regulation) to delayed (e.g. crown size adjustment). The interplay of the different response times and processes, and their effects on long-term whole-tree performance, however, is hardly understood. Here we investigated legacy effects on structures and functions of mature Scots pine in a dry inner-Alpine Swiss valley after stopping an 11-yr lasting irrigation treatment. Measured ecophysiological time series were analysed and interpreted with a system-analytic tree model. We found that the irrigation stop led to a cascade of downregulations of physiological and morphological processes with different response times. Biophysical processes responded within days, whereas needle and shoot lengths, crown transparency, and radial stem growth reached control levels after up to 4 yr only. Modelling suggested that organ and carbon reserve turnover rates play a key role for a tree's responsiveness to environmental changes. Needle turnover rate was found to be most important to accurately model stem growth dynamics. We conclude that leaf area and its adjustment time to new conditions is the main determinant for radial stem growth of pine trees as the transpiring area needs to be supported by a proportional amount of sapwood, despite the growth-inhibiting environmental conditions.


Assuntos
Pinus sylvestris , Pinus , Secas , Folhas de Planta , Água
7.
Plant Cell Environ ; 43(12): 3068-3080, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32909290

RESUMO

While plant height is the main driver of variation in mean vessel diameter at the stem base (VD) across angiosperms, climate, specifically temperature, does play an explanatory role, with vessels being wider with warmer temperature for plants of the same height. Using a comparative approach sampling 537 species of angiosperms across 19 communities, we rejected selection favouring freezing-induced embolism resistance as being able to account for wider vessels for a given height in warmer climates. Instead, we give reason to suspect that higher vapour pressure deficit (VPD) accounts for the positive scaling of height-standardized VD (and potential xylem conductance) with temperature. Selection likely favours conductive systems that are able to meet the higher transpirational demand of warmer climates, which have higher VPD, resulting in wider vessels for a given height. At the same time, wider vessels are likely more vulnerable to dysfunction. With future climates likely to experience ever greater extremes of VPD, future forests could be increasingly vulnerable.


Assuntos
Plantas/anatomia & histologia , Xilema/anatomia & histologia , Clima , Congelamento , Transpiração Vegetal , Plantas/metabolismo , Chuva , Temperatura , Pressão de Vapor , Xilema/metabolismo , Xilema/fisiologia
8.
J Exp Bot ; 71(14): 4232-4242, 2020 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-32219309

RESUMO

Plant hydraulic traits are essential metrics for characterizing variation in plant function, but they vary markedly with plant size and position in a plant. We explore the potential effect of conduit widening on variation in hydraulic traits along the stem. We examined three species that differ in conduit diameter at the stem base for a given height (Moringa oleifera, Casimiroa edulis, and Pinus ayacahuite). We made anatomical and hydraulic measurements at different distances from the stem tip, constructed vulnerability curves, and examined the safety-efficiency trade-off with height-standardized data. Our results showed that segment-specific hydraulic resistance varied predictably along the stem, paralleling changes in mean conduit diameter and total number of conduits. The Huber value and leaf specific conductivity also varied depending on the sampling point. Vulnerability curves were markedly less noisy with height standardization, making the vulnerability-efficiency trade-off clearer. Because conduits widen predictably along the stem, taking height and distance from the tip into account provides a way of enhancing comparability and interpretation of hydraulic traits. Our results suggest the need for rethinking hydraulic sampling for comparing plant functional differences and strategies across individuals.


Assuntos
Pinus , Traqueófitas , Folhas de Planta , Água , Xilema
9.
J Theor Biol ; 502: 110369, 2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-32526220

RESUMO

Xylem conduit diameter widens from leaf tip to stem base and how this widening affects the total hydraulic resistance (RTOT) and the gradient of water potential (Ψxyl) has never been thoroughly investigated. Data of conduit diameter of Acer pseudoplatanus,Fagus sylvatica and Picea abies were used to model the axial variation of RTOT and Ψxyl. The majority of RTOT (from 79 to 98%) was predicted to be confined within the leaf/needle. This means that the xylem conduits of stem and roots, accounting for nearly the total length of the hydraulic path, theoretically provide a nearly negligible contribution to RTOT. Consequently, a steep gradient of water potentials was predicted to develop within the leaf/needle base, whereas lower in the stem water potentials approximate those of rootlets. Our results would suggest that the strong partitioning of RTOT between leaves/needles coupled with basal conduit widening is of key importance for both hydraulic safety against drought-induced embolism formation and efficiency, as it minimizes the exposure of stem xylem to high tensions and makes the total plant's conductance substantially independent of body size.


Assuntos
Acer , Pinus , Folhas de Planta , Água , Xilema
10.
J Exp Bot ; 70(20): 5765-5772, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31328237

RESUMO

As trees grow taller, hydraulic resistance can be expected to increase, causing photosynthetic productivity to decline. Yet leaves maintain productivity over vast height increases; this maintenance of productivity suggests that leaf-specific conductance remains constant as trees grow taller. Here we test the assumption of constant leaf-specific conductance with height growth and document the stem xylem anatomical adjustments involved. We measured the scaling of total leaf area, mean vessel diameter at terminal twigs and at the stem base, and total vessel number in 139 individuals of Moringa oleifera of different heights, and estimated a whole-plant conductance index from these measurements. Whole-plant conductance and total leaf area scaled at the same rate with height. Congruently, whole-plant conductance and total leaf area scaled isometrically. Constant conductance is made possible by intricate adjustments in anatomy, with conduit diameters in terminal twigs becoming wider, lowering per-vessel resistance, with a concomitant decrease in vessel number per unit leaf area with height growth. Selection maintaining constant conductance per unit leaf area with height growth (or at least minimizing drops in conductance) is likely a potent selective pressure shaping plant hydraulics, and crucially involved in the maintenance of photosynthetic productivity per leaf area across the terrestrial landscape.


Assuntos
Moringa oleifera/metabolismo , Moringa oleifera/fisiologia , Moringa oleifera/crescimento & desenvolvimento , Fotossíntese/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Xilema/crescimento & desenvolvimento , Xilema/metabolismo , Xilema/fisiologia
11.
J Exp Bot ; 70(21): 6195-6201, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31365742

RESUMO

The structure of leaf veins is typically described by a hierarchical scheme (e.g. midrib, 1st order, 2nd order), which is used to predict variation in conduit diameter from one order to another whilst overlooking possible variation within the same order. We examined whether xylem conduit diameter changes within the same vein order, with resulting consequences for resistance to embolism. We measured the hydraulic diameter (Dh), and number of vessels (VN) along the midrib and petioles of leaves of Acer pseudoplatanus, and estimated the leaf area supplied (Aleaf-sup) at different points of the midrib and how variation in anatomical traits affected embolism resistance. We found that Dh scales with distance from the midrib tip (path length, L) with a power of 0.42, and that VN scales with Aleaf-sup with a power of 0.66. Total conductive area scales isometrically with Aleaf-sup. Embolism events along the midrib occurred first in the basipetal part and then at the leaf tip where vessels are narrower. The distance from the midrib tip is a good predictor of the variation in vessel diameter along the 1st order veins in A. pseudoplatanus leaves and this anatomical pattern seems to have an effect on hydraulic integrity since wider vessels at the leaf base embolize first.


Assuntos
Acer/anatomia & histologia , Folhas de Planta/anatomia & histologia , Água , Xilema/anatomia & histologia , Xilema/fisiologia
12.
Sensors (Basel) ; 19(10)2019 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-31137901

RESUMO

Thermal dissipation probe (TDP) method (Granier, 1985) is widely used to estimate tree transpiration (i.e., the water evaporated from the leaves) because it is simple to build, easy to install, and relatively inexpensive. However, the universality of the original calibration has been questioned and, in many cases, proved to be inaccurate. Thus, when the TDP is used in a new species, specific tests should be carried out. Our aim was to propose a new method for improving the accuracy of TDP on trees in the field. Small hazelnut trees (diameter at breast height 5 cm) were used for the experiment. The response of TDP sensors was compared with a reference water uptake measured with an electronic potometer system provided with a high precision liquid flow meter. We equipped three stems where we measured the sap flow density, the sapwood area (by using fuchsine), the total tree water uptake (reference), and the main meteorological parameters during summer 2018. Results confirmed that the original Granier's calibration underestimated the effective tree transpiration (relative error about -60%). We proposed a new equation for improving the measurement accuracy within an error of about 4%. The system proposed appeared an easier solution compared to potted trees and particularly suitable for orchards, thus contributing to improve the irrigation management worldwide.

13.
New Phytol ; 218(4): 1383-1392, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29655212

RESUMO

Trees scale leaf (AL ) and xylem (AX ) areas to couple leaf transpiration and carbon gain with xylem water transport. Some species are known to acclimate in AL  : AX balance in response to climate conditions, but whether trees of different species acclimate in AL  : AX in similar ways over their entire (continental) distributions is unknown. We analyzed the species and climate effects on the scaling of AL vs AX in branches of conifers (Pinus sylvestris, Picea abies) and broadleaved (Betula pendula, Populus tremula) sampled across a continental wide transect in Europe. Along the branch axis, AL and AX change in equal proportion (isometric scaling: b Ëœ 1) as for trees. Branches of similar length converged in the scaling of AL vs AX with an exponent of b = 0.58 across European climates irrespective of species. Branches of slow-growing trees from Northern and Southern regions preferentially allocated into new leaf rather than xylem area, with older xylem rings contributing to maintaining total xylem conductivity. In conclusion, trees in contrasting climates adjust their functional balance between water transport and leaf transpiration by maintaining biomass allocation to leaves, and adjusting their growth rate and xylem production to maintain xylem conductance.


Assuntos
Folhas de Planta/anatomia & histologia , Árvores/crescimento & desenvolvimento , Madeira/anatomia & histologia , Europa (Continente) , Geografia , Modelos Estatísticos , Especificidade da Espécie , Árvores/anatomia & histologia , Xilema/anatomia & histologia
14.
New Phytol ; 215(2): 569-581, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28631326

RESUMO

Bark thickness is ecologically crucial, affecting functions from fire protection to photosynthesis. Bark thickness scales predictably with stem diameter, but there is little consensus on whether this scaling is a passive consequence of growth or an important adaptive phenomenon requiring explanation. With a comparative study across 913 species, we test the expectation that, if bark thickness-stem diameter scaling is adaptive, it should be possible to find ecological situations in which scaling is predictably altered, in this case between species with different types and deployments of phloem. 'Dicots' with successive cambia and monocots, which have phloem-free bark, had predictably thinner inner (mostly living) bark than plants with single cambia. Lianas, which supply large leaf areas with limited stem area, had much thicker inner bark than self-supporting plants. Gymnosperms had thicker outer bark than angiosperms. Inner bark probably scales with plant metabolic demands, for example with leaf area. Outer bark scales with stem diameter less predictably, probably reflecting diverse adaptive factors; for example, it tends to be thicker in fire-prone species and very thin when bark photosynthesis is favored. Predictable bark thickness-stem diameter scaling across plants with different photosynthate translocation demands and modes strongly supports the idea that this relationship is functionally important and adaptively significant.


Assuntos
Evolução Biológica , Cycadopsida/fisiologia , Casca de Planta/anatomia & histologia , Plantas/anatomia & histologia , Cycadopsida/anatomia & histologia , Magnoliopsida/anatomia & histologia , Magnoliopsida/fisiologia , Floema , Casca de Planta/fisiologia , Caules de Planta/anatomia & histologia , Caules de Planta/fisiologia
15.
New Phytol ; 209(1): 216-27, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26224215

RESUMO

Leaves of vascular plants use specific tissues to irrigate the lamina (veins) and to regulate water loss (stomata), to approach homeostasis in leaf hydration during photosynthesis. As both tissues come with attendant costs, it would be expected that the synthesis and spacing of leaf veins and stomata should be coordinated in a way that maximizes benefit to the plant. We propose an innovative geoprocessing method based on image editing and a geographic information system to study the quantitative relationships between vein and stomatal spatial patterns on leaves collected from 31 angiosperm species from different biomes. The number of stomata within each areole was linearly related to the length of the looping vein contour. As a consequence of the presence of free-ending veinlets, the minimum mean distance of stomata from the nearest veins was invariant with areole size in most of the species, and species with smaller distances carried a higher density of stomata. Uniformity of spatial patterning was consistent within leaves and species. Our results demonstrate the existence of an optimal spatial organization of veins and stomata, and suggest their interplay as a key feature for achieving a constant mesophyll hydraulic resistance throughout the leaf.


Assuntos
Magnoliopsida/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Transporte Biológico , Magnoliopsida/anatomia & histologia , Fotossíntese/fisiologia , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Estômatos de Plantas/anatomia & histologia , Água/metabolismo
16.
Glob Chang Biol ; 22(11): 3804-3813, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27082838

RESUMO

The interaction between xylem phenology and climate assesses forest growth and productivity and carbon storage across biomes under changing environmental conditions. We tested the hypothesis that patterns of wood formation are maintained unaltered despite the temperature changes across cold ecosystems. Wood microcores were collected weekly or biweekly throughout the growing season for periods varying between 1 and 13 years during 1998-2014 and cut in transverse sections for assessing the onset and ending of the phases of xylem differentiation. The data set represented 1321 trees belonging to 10 conifer species from 39 sites in the Northern Hemisphere and covering an interval of mean annual temperature exceeding 14 K. The phenological events and mean annual temperature of the sites were related linearly, with spring and autumnal events being separated by constant intervals across the range of temperature analysed. At increasing temperature, first enlarging, wall-thickening and mature tracheids appeared earlier, and last enlarging and wall-thickening tracheids occurred later. Overall, the period of wood formation lengthened linearly with the mean annual temperature, from 83.7 days at -2 °C to 178.1 days at 12 °C, at a rate of 6.5 days °C-1 . April-May temperatures produced the best models predicting the dates of wood formation. Our findings demonstrated the uniformity of the process of wood formation and the importance of the environmental conditions occurring at the time of growth resumption. Under warming scenarios, the period of wood formation might lengthen synchronously in the cold biomes of the Northern Hemisphere.


Assuntos
Temperatura Baixa , Traqueófitas , Xilema , Ecossistema , Desenvolvimento Vegetal , Estações do Ano , Árvores
17.
Ecol Lett ; 17(8): 988-97, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24847972

RESUMO

Angiosperm hydraulic performance is crucially affected by the diameters of vessels, the water conducting conduits in the wood. Hydraulic optimality models suggest that vessels should widen predictably from stem tip to base, buffering hydrodynamic resistance accruing as stems, and therefore conductive path, increase in length. Data from 257 species (609 samples) show that vessels widen as predicted with distance from the stem apex across angiosperm orders, habits and habitats. Standardising for stem length, vessels are only slightly wider in warm/moist climates and in lianas, showing that, rather than climate or habit, plant size is by far the main driver of global variation in mean vessel diameter. Terminal twig vessels become wider as plant height increases, while vessel density decreases slightly less than expected tip to base. These patterns lead to testable predictions regarding evolutionary strategies allowing plants to minimise carbon costs per unit leaf area even as height increases.


Assuntos
Clima , Magnoliopsida/anatomia & histologia , Magnoliopsida/fisiologia , Evolução Biológica , Ecossistema , Modelos Lineares , Magnoliopsida/classificação , Caules de Planta/anatomia & histologia , Caules de Planta/fisiologia
18.
Proc Biol Sci ; 280(1751): 20122375, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23193128

RESUMO

Tree-size distribution is one of the most investigated subjects in plant population biology. The forestry literature reports that tree-size distribution trajectories vary across different stands and/or species, whereas the metabolic scaling theory suggests that the tree number scales universally as -2 power of diameter. Here, we propose a simple functional scaling model in which these two opposing results are reconciled. Basic principles related to crown shape, energy optimization and the finite-size scaling approach were used to define a set of relationships based on a single parameter that allows us to predict the slope of the tree-size distributions in a steady-state condition. We tested the model predictions on four temperate mountain forests. Plots (4 ha each, fully mapped) were selected with different degrees of human disturbance (semi-natural stands versus formerly managed). Results showed that the size distribution range successfully fitted by the model is related to the degree of forest disturbance: in semi-natural forests the range is wide, whereas in formerly managed forests, the agreement with the model is confined to a very restricted range. We argue that simple allometric relationships, at an individual level, shape the structure of the whole forest community.


Assuntos
Biota , Demografia , Modelos Biológicos , Árvores/crescimento & desenvolvimento , Biometria , Agricultura Florestal , Itália , Romênia
19.
Ann Bot ; 112(9): 1911-20, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24201138

RESUMO

BACKGROUND AND AIMS: Ongoing global warming has been implicated in shifting phenological patterns such as the timing and duration of the growing season across a wide variety of ecosystems. Linear models are routinely used to extrapolate these observed shifts in phenology into the future and to estimate changes in associated ecosystem properties such as net primary productivity. Yet, in nature, linear relationships may be special cases. Biological processes frequently follow more complex, non-linear patterns according to limiting factors that generate shifts and discontinuities, or contain thresholds beyond which responses change abruptly. This study investigates to what extent cambium phenology is associated with xylem growth and differentiation across conifer species of the northern hemisphere. METHODS: Xylem cell production is compared with the periods of cambial activity and cell differentiation assessed on a weekly time scale on histological sections of cambium and wood tissue collected from the stems of nine species in Canada and Europe over 1-9 years per site from 1998 to 2011. KEY RESULTS: The dynamics of xylogenesis were surprisingly homogeneous among conifer species, although dispersions from the average were obviously observed. Within the range analysed, the relationships between the phenological timings were linear, with several slopes showing values close to or not statistically different from 1. The relationships between the phenological timings and cell production were distinctly non-linear, and involved an exponential pattern. CONCLUSIONS: The trees adjust their phenological timings according to linear patterns. Thus, shifts of one phenological phase are associated with synchronous and comparable shifts of the successive phases. However, small increases in the duration of xylogenesis could correspond to a substantial increase in cell production. The findings suggest that the length of the growing season and the resulting amount of growth could respond differently to changes in environmental conditions.


Assuntos
Câmbio/crescimento & desenvolvimento , Traqueófitas/crescimento & desenvolvimento , Xilema/crescimento & desenvolvimento , Canadá , Diferenciação Celular , Mudança Climática , Europa (Continente) , Xilema/citologia
20.
Plant Cell Rep ; 32(6): 885-98, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23553557

RESUMO

The radial growth of plant stem is based on the development of cribro-vascular cambium tissues. It affects the transport efficiency of water, mineral nutrients and photoassimilates and, ultimately, also plant height. The rate of cambial cell divisions for the assembly of new xylem and phloem tissue primordia and the rate of differentiation of the primordia into mature tissues determine the amount of biomass produced and, in the case of woody species, the wood quality. These complex physiological processes proceed at a rate which depends on several factors, acting at various levels: growth regulators, resource availability and environmental factors. Several hormonal signals and, more recently, further regulatory molecules, have been shown to be involved in the induction and maintenance of cambium and the formation of secondary vascular tissues. The control of xylem cell patterning is of particular interest, because it determines the diameter of xylem vessels, which is central to the efficiency of water and nutrient transport from roots to leaves through the stem and may strongly influence the growth in height of the tree. Increasing scientific evidence have proved the role of other hormones in cambial cell activities and the study of the hormonal signals and their crosstalking in cambial cells may foster our understanding of the dynamics of xylogenesis and of the mechanism of vessel size control along the stem. In this article, the role of the hormonal signals involved in the control of cambium and xylem development in trees and their crosstalking are reviewed.


Assuntos
Câmbio/fisiologia , Lactonas/metabolismo , Caules de Planta/fisiologia , Poliaminas/metabolismo , Árvores/fisiologia , Xilema/fisiologia , Padronização Corporal , Câmbio/citologia , Câmbio/crescimento & desenvolvimento , Diferenciação Celular , Hormônios Peptídicos/metabolismo , Caules de Planta/citologia , Caules de Planta/crescimento & desenvolvimento , Árvores/citologia , Árvores/crescimento & desenvolvimento , Xilema/citologia , Xilema/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa