RESUMO
The efficacy of adoptive T cell therapies for cancer treatment can be limited by suppressive signals from both extrinsic factors and intrinsic inhibitory checkpoints1,2. Targeted gene editing has the potential to overcome these limitations and enhance T cell therapeutic function3-10. Here we performed multiple genome-wide CRISPR knock-out screens under different immunosuppressive conditions to identify genes that can be targeted to prevent T cell dysfunction. These screens converged on RASA2, a RAS GTPase-activating protein (RasGAP) that we identify as a signalling checkpoint in human T cells, which is downregulated upon acute T cell receptor stimulation and can increase gradually with chronic antigen exposure. RASA2 ablation enhanced MAPK signalling and chimeric antigen receptor (CAR) T cell cytolytic activity in response to target antigen. Repeated tumour antigen stimulations in vitro revealed that RASA2-deficient T cells show increased activation, cytokine production and metabolic activity compared with control cells, and show a marked advantage in persistent cancer cell killing. RASA2-knockout CAR T cells had a competitive fitness advantage over control cells in the bone marrow in a mouse model of leukaemia. Ablation of RASA2 in multiple preclinical models of T cell receptor and CAR T cell therapies prolonged survival in mice xenografted with either liquid or solid tumours. Together, our findings highlight RASA2 as a promising target to enhance both persistence and effector function in T cell therapies for cancer treatment.
Assuntos
Antígenos de Neoplasias , Neoplasias , Linfócitos T , Proteínas Ativadoras de ras GTPase , Animais , Antígenos de Neoplasias/imunologia , Medula Óssea , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Técnicas de Silenciamento de Genes , Humanos , Imunoterapia Adotiva , Leucemia/imunologia , Leucemia/patologia , Leucemia/terapia , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas Ativadoras de ras GTPase/deficiência , Proteínas Ativadoras de ras GTPase/genéticaRESUMO
Antisense oligonucleotides (AONs) are a versatile tool for treating inherited retinal diseases. However, little is known about how different chemical modifications of AONs can affect their biodistribution, toxicity, and uptake in the retina. Here, we addressed this question by comparing splice-switching AONs with three different chemical modifications commonly used in a clinical setting (2'O-methyl-phosphorothioate (2-OMe/PS), 2'O-methoxyethyl-phosphoriate (2-MOE/PS), and phosphorodiamidite morpholino oligomers (PMO)). These AONs targeted genes exclusively expressed in certain types of retinal cells. Overall, studies in vitro and in vivo in C57BL/6J wild-type mouse retinas showed that 2-OMe/PS and 2-MOE/PS AONs have comparable efficacy and safety profiles. In contrast, octa-guanidine-dendrimer-conjugated in vivo PMO-oligonucleotides (ivPMO) caused toxicity. This was evidenced by externally visible ocular phenotypes in 88.5% of all ivPMO-treated animals, accompanied by severe alterations at the morphological level. However, delivery of unmodified PMO-AONs did not cause any toxicity, although it clearly reduced the efficacy. We conducted the first systematic comparison of different chemical modifications of AONs in the retina. Our results showed that the same AON sequence with different chemical modifications displayed different splicing modulation efficacies, suggesting the 2'MOE/PS modification as the most efficacious in these conditions. Thereby, our work provides important insights for future clinical applications.
Assuntos
Camundongos Endogâmicos C57BL , Oligonucleotídeos Antissenso , Retina , Animais , Oligonucleotídeos Antissenso/farmacocinética , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/toxicidade , Retina/metabolismo , Retina/efeitos dos fármacos , Camundongos , Distribuição Tecidual , Humanos , Morfolinos/genética , Morfolinos/química , Morfolinos/farmacocinética , Oligonucleotídeos Fosforotioatos/química , Oligonucleotídeos Fosforotioatos/farmacocinética , Oligonucleotídeos Fosforotioatos/metabolismo , Doenças Retinianas/genética , Doenças Retinianas/metabolismo , Doenças Retinianas/tratamento farmacológicoRESUMO
The limited availability of cytokines in solid tumours hinders maintenance of the antitumour activity of chimeric antigen receptor (CAR) T cells. Cytokine receptor signalling pathways in CAR T cells can be activated by transgenic expression or injection of cytokines in the tumour, or by engineering the activation of cognate cytokine receptors. However, these strategies are constrained by toxicity arising from the activation of bystander cells, by the suboptimal biodistribution of the cytokines and by downregulation of the cognate receptor. Here we show that replacement of the extracellular domains of heterodimeric cytokine receptors in T cells with two leucine zipper motifs provides optimal Janus kinase/signal transducer and activator of transcription signalling. Such chimeric cytokine receptors, which can be generated for common γ-chain receptors, interleukin-10 and -12 receptors, enabled T cells to survive cytokine starvation without induction of autonomous cell growth, and augmented the effector function of CAR T cells in vitro in the setting of chronic antigen exposure and in human tumour xenografts in mice. As a modular design, leucine zippers can be used to generate constitutively active cytokine receptors in effector immune cells.
RESUMO
Chimeric antigen receptor (CAR) T-cell therapy has had limited success in early-phase clinical studies for solid tumors. Lack of efficacy is most likely multifactorial, including a limited array of targetable antigens. We reasoned that targeting the cancer-specific extra domain B (EDB) splice variant of fibronectin might overcome this limitation because it is abundantly secreted by cancer cells and adheres to their cell surface. In vitro, EDB-CAR T cells recognized and killed EDB-positive tumor cells. In vivo, 1 × 106 EDB-CAR T cells had potent antitumor activity in both subcutaneous and systemic tumor xenograft models, resulting in a significant survival advantage in comparison with control mice. EDB-CAR T cells also targeted the tumor vasculature, as judged by IHC and imaging, and their antivascular activity was dependent on the secretion of EDB by tumor cells. Thus, targeting tumor-specific splice variants such as EDB with CAR T cells is feasible and has the potential to improve the efficacy of CAR T-cell therapy.
Assuntos
Fibronectinas/antagonistas & inibidores , Imunoterapia Adotiva/métodos , Proteínas de Neoplasias/antagonistas & inibidores , Neoplasias/terapia , Linfócitos T/transplante , Animais , Antígenos de Neoplasias , Linhagem Celular Tumoral , Técnicas de Cocultura , Estudos de Viabilidade , Fibronectinas/genética , Fibronectinas/imunologia , Fibronectinas/metabolismo , Voluntários Saudáveis , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/imunologia , Proteínas de Neoplasias/metabolismo , Neoplasias/imunologia , Neoplasias/patologia , Cultura Primária de Células , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Isoformas de Proteínas/metabolismo , Splicing de RNA , Receptores de Antígenos Quiméricos/imunologia , Linfócitos T/imunologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Chimeric antigen receptor (CAR) T cell therapy is revolutionizing cancer immunotherapy for patients with B cell malignancies and is now being developed for solid tumors and chronic viral infections. Although clinical trials have demonstrated the curative potential of CAR T cell therapy, a substantial and well-established limitation is the heightened contraction and transient persistence of CAR T cells during prolonged antigen exposure. The underlying mechanism(s) for this dysfunctional state, often termed CAR T cell exhaustion, remains poorly defined. Here, we report that exhaustion of human CAR T cells occurs through an epigenetic repression of the T cell's multipotent developmental potential. Deletion of the de novo DNA methyltransferase 3 alpha (DNMT3A) in T cells expressing first- or second-generation CARs universally preserved the cells' ability to proliferate and mount an antitumor response during prolonged tumor exposure. The increased functionality of the exhaustion-resistant DNMT3A knockout CAR T cells was coupled to an up-regulation of interleukin-10, and genome-wide DNA methylation profiling defined an atlas of genes targeted for epigenetic silencing. This atlas provides a molecular definition of CAR T cell exhaustion, which includes many transcriptional regulators that limit the "stemness" of immune cells, including CD28, CCR7, TCF7, and LEF1. Last, we demonstrate that this epigenetically regulated multipotency program is firmly coupled to the clinical outcome of prior CAR T cell therapies. These data document the critical role epigenetic mechanisms play in limiting the fate potential of human T cells and provide a road map for leveraging this information for improving CAR T cell efficacy.