RESUMO
RATIONALE: Characterization of N,N'-substituted ureas was found to be challenging by nuclear magnetic resonance (NMR) spectroscopy, particularly N-di- and tri-alkylated ureas because of the absence of adjacent protons. In the present study, electrospray ionization tandem mass spectrometry has been used to differentiate positional isomeric pairs and to characterize a series of N,N'-substituted ureas, as these compounds have significant importance for drug discovery. Additionally, urea is an essential functionality in several bioactive compounds as well as a variety of clinically approved therapies. METHODS: High-resolution electrospray ionization tandem mass spectrometry (ESI-HR-MS/MS) has been used to characterize a series of N,N'-substituted urea derivatives and differentiate two pairs of positional isomers. The data was acquired by Xcaliber application in positive ionization mode. RESULTS: ESI-HR-MS/MS spectra of [M + H]+ ions of the positional isomeric urea derivatives 8a and 8b show distinct fragmentation patterns. For example, the MS/MS spectrum of the [M + H]+ ion of isomer 8a displays the abundant fragment ion at m/z 285.1595, which was totally absent in isomer 8b. This would be plausibly formed by the cleavage of the C-N bond of the urea group with the elimination of the isocyanate moiety. In contrast, the MS/MS spectrum of the [M + H]+ ion of isomer 8b shows an intense ion at m/z 311.1389 which is completely absent in isomer 8a which would be formed by the cleavage of the C-N bond attached to the ring nitrogen. Similarly, another pair of positional isomers, 8c and 8d, have been clearly distinguished by their fragmentation behaviour. In addition, a series of N,N'-substituted urea derivatives were studied to investigate the impact of different substitution on the fragmentation behaviour. CONCLUSIONS: The present study demonstrates that ESI-HR-MS/MS can be used to differentiate pairs of N,N'-substituted urea positional isomers and characterize a series of derivatives. It was observed that a characteristic fragment ion was formed by the C-N bond cleavage with the elimination of an isocyanate moiety. The proposed mechanism of fragmentation was supported by the change in the fragmentation pathway upon alkylation of the NH. In order to generalize this fragmentation pattern, a series of N-alkylated ureas was synthesized and studied by MS/MS.
RESUMO
We report the discovery and optimization of aryl piperidinone urea formyl peptide receptor 2 (FPR2) agonists from a weakly active high-throughput screening (HTS) hit to potent and selective agonists with favorable efficacy in acute in vivo models. A basis for the selectivity for FPR2 over FPR1 is proposed based on docking molecules into recently reported FPR2 and FPR1 cryoEM structures. Compounds from the new scaffold reported in this study exhibited superior potency and selectivity and favorable ADME profiles. Furthermore, select compounds were evaluated in an acute rat lipopolysaccharide (LPS) inflammation model and demonstrated robust dose-dependent induction of IL10, a marker for inflammation resolution, providing a valuable proof of concept for this class of FPR2 agonists.
RESUMO
BMS-813160 (compound 3) was identified as a potent and selective CCR2/5 dual antagonist. Compound 3 displayed good permeability at pH = 7.4 in PAMPA experiments and demonstrated excellent human liver microsome stability. Pharmacokinetic studies established that 3 had excellent oral bioavailability and exhibited low clearance in dog and cyno. Compound 3 was also studied in the mouse thioglycollate-induced peritonitis model, which confirmed its ability to inhibit the migration of inflammatory monocytes and macrophages. As a result of this profile, compound 3 was selected as a clinical candidate.
RESUMO
In solving the P-gp and BCRP transporter-mediated efflux issue in a series of benzofuran-derived pan-genotypic palm site inhibitors of the hepatitis C virus NS5B replicase, it was found that close attention to physicochemical properties was essential. In these compounds, where both molecular weight (MW >579) and TPSA (>110 Å2) were high, attenuation of polar surface area together with weakening of hydrogen bond acceptor strength of the molecule provided a higher intrinsic membrane permeability and more desirable Caco-2 parameters, as demonstrated by trifluoroacetamide 11 and the benchmark N-ethylamino analog 12. In addition, the tendency of these inhibitors to form intramolecular hydrogen bonds potentially contributes favorably to the improved membrane permeability and absorption. The functional group minimization that resolved the efflux problem simultaneously maintained potent inhibitory activity toward a gt-2 HCV replicon due to a switching of the role of substituents in interacting with the Gln414 binding pocket, as observed in gt-2a NS5B/inhibitor complex cocrystal structures, thus increasing the efficiency of the optimization. Noteworthy, a novel intermolecular S=O···C=O n â π* type interaction between the ligand sulfonamide oxygen atom and the carbonyl moiety of the side chain of Gln414 was observed. The insights from these structure-property studies and crystallography information provided a direction for optimization in a campaign to identify second generation pan-genotypic NS5B inhibitors.
RESUMO
The hepatitis C virus (HCV) NS5B replicase is a prime target for the development of direct-acting antiviral drugs for the treatment of chronic HCV infection. Inspired by the overlay of bound structures of three structurally distinct NS5B palm site allosteric inhibitors, the high-throughput screening hit anthranilic acid 4, the known benzofuran analogue 5, and the benzothiadiazine derivative 6, an optimization process utilizing the simple benzofuran template 7 as a starting point for a fragment growing approach was pursued. A delicate balance of molecular properties achieved via disciplined lipophilicity changes was essential to achieve both high affinity binding and a stringent targeted absorption, distribution, metabolism, and excretion profile. These efforts led to the discovery of BMS-929075 (37), which maintained ligand efficiency relative to early leads, demonstrated efficacy in a triple combination regimen in HCV replicon cells, and exhibited consistently high oral bioavailability and pharmacokinetic parameters across preclinical animal species. The human PK properties from the Phase I clinical studies of 37 were better than anticipated and suggest promising potential for QD administration.