Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Pharm (Weinheim) ; 354(1): e2000116, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33015829

RESUMO

In continuation of our previous work on cancer and inflammation, 15 novel pyrazole-pyrazoline hybrids (WSPP1-15) were synthesized and fully characterized. The formation of the pyrazoline ring was confirmed by the appearance of three doublets of doublets in 1 H nuclear magnetic resonance spectra exhibiting an AMX pattern for three protons (HA , HM , and HX ) of the pyrazoline ring. All the synthesized compounds were screened for their in vitro anticancer activity against five cell lines, that is, MCF-7, A549, SiHa, COLO205, and HepG2 cells, using the MTT growth inhibition assay. 5-Fluorouracil was taken as the positive control in the study. It was observed that, among them, WSPP11 was found to be active against A549, SiHa, COLO205, and HepG2 cells, with IC50 values of 4.94, 4.54, 4.86, and 2.09 µM. All the derivatives were also evaluated for their cytotoxicity against HaCaT cells. WSPP11 was also found to be nontoxic against normal cells (cell line HaCaT), with an IC50 value of more than 50 µM. The derivatives were also evaluated for their in vitro anti-inflammatory activity by the protein (egg albumin) denaturation assay and the red blood cell membrane stabilizing assay, using diclofenac sodium and celecoxib as standard. Compounds that showed significant anticancer and anti-inflammatory activities were further studied for COX-2 inhibition. The manifestation of a higher COX-2 selectivity index of WSPP11 as compared with other derivatives and an in vitro anticancer activity against four cell lines further established that compounds that were more selective toward COX-2 also exhibited a better spectrum of activity against various cancer cell lines.


Assuntos
Antineoplásicos/farmacologia , Inibidores de Ciclo-Oxigenase 2/farmacologia , Neoplasias/tratamento farmacológico , Pirazóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Inibidores de Ciclo-Oxigenase 2/síntese química , Inibidores de Ciclo-Oxigenase 2/química , Desenho de Fármacos , Fluoruracila/farmacologia , Humanos , Concentração Inibidora 50 , Neoplasias/patologia , Pirazóis/síntese química , Pirazóis/química , Relação Estrutura-Atividade
2.
Bioorg Chem ; 89: 102986, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31146198

RESUMO

In continuance with earlier reported work, an extension has been carried out by the same research group. Mulling over the ongoing condition of resistance to existing antimalarial agents, we had reported synthesis and antimalarial activity of certain pyrazole-1,3,4-oxadiazole hybrid compounds. Bearing previous results in mind, our research group ideated to design and synthesize some more derivatives with varied substitutions of acetophenone and hydrazide. Following this, derivatives 5a-r were synthesized and tested for antimalarial efficacy by schizont maturation inhibition assay. Further, depending on the literature support and results of our previous series, certain potent compounds (5f, 5n and 5r) were subjected to Falcipain-2 inhibitory assay. Results obtained for these particular compounds further strengthened our hypothesis. Here, in this series, compound 5f having unsubstituted acetophenone part and a furan moiety linked to oxadiazole ring emerged as the most potent compound and results were found to be comparable to that of the most potent compound (indole bearing) of previous series. Additionally, depending on the available literature, compounds (5a-r) were tested for their antileishmanial potential. Compounds 5a, 5c and 5r demonstrated dose-dependent killing of the promastigotes. Their IC50 values were found to be 33.3 ±â€¯1.68, 40.1 ±â€¯1.0 and 19.0 ±â€¯1.47 µg/mL respectively. These compounds (5a, 5c and 5r) also had effects on amastigote infectivity with IC50 of 44.2 ±â€¯2.72, 66.8 ±â€¯2.05 and 73.1 ±â€¯1.69 µg/mL respectively. Further target validation was done using molecular docking studies. Acute oral toxicity studies for most active compounds were also performed.


Assuntos
Antimaláricos/farmacologia , Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Oxidiazóis/química , Plasmodium falciparum/efeitos dos fármacos , Animais , Antimaláricos/química , Antimaláricos/metabolismo , Antiprotozoários/síntese química , Antiprotozoários/química , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Cisteína Endopeptidases/química , Cisteína Endopeptidases/metabolismo , Desenho de Fármacos , Concentração Inibidora 50 , Leishmania/fisiologia , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Camundongos , Simulação de Acoplamento Molecular , Oxidiazóis/síntese química , Oxidiazóis/farmacologia , Estrutura Terciária de Proteína , Pirazóis/química , Células RAW 264.7 , Ratos , Ratos Wistar , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa