Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Sport Exerc Psychol ; 46(4): 205-217, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38815973

RESUMO

Vision is central to success in nearly all sports, and there is an emerging body of research investigating the links between visual abilities and athletic performance. This preregistered scoping review seeks to clarify the topics of study, methodologies used, populations under investigation, researchers, and disciplines driving this field. Systematic searches of English-language articles were conducted in PubMed and Web of Science, with additional literature identified through bibliographic searches. Six hundred sixty-seven articles published between 1976 and 2023 were identified with 547 empirical studies, 58 review articles, 20 commentaries, and 4 meta-analyses, among others. Among the empirical papers, 411 reported on visual assessments and 98 on vision training interventions. The most represented sports included baseball, soccer, basketball, and cricket, with over 150 articles reporting on professional, elite, or Olympic athletes. This scoping review describes the breadth of this emerging field, identifies its strengths and weaknesses, and provides recommendations for future improvement.


Assuntos
Desempenho Atlético , Humanos , Desempenho Atlético/psicologia , Percepção Visual , Esportes/psicologia , Futebol
2.
Mov Disord ; 38(1): 123-132, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36226903

RESUMO

BACKGROUND: Writer's cramp (WC) dystonia is a rare disease that causes abnormal postures during the writing task. Successful research studies for WC and other forms of dystonia are contingent on identifying sensitive and specific measures that relate to the clinical syndrome and achieve a realistic sample size to power research studies for a rare disease. Although prior studies have used writing kinematics, their diagnostic performance remains unclear. OBJECTIVE: This study aimed to evaluate the diagnostic performance of automated measures that distinguish subjects with WC from healthy volunteers. METHODS: A total of 21 subjects with WC and 22 healthy volunteers performed a sentence-copying assessment on a digital tablet using kinematic and hand recognition softwares. The sensitivity and specificity of automated measures were calculated using a logistic regression model. Power analysis was performed for two clinical research designs using these measures. The test and retest reliability of select automated measures was compared across repeat sentence-copying assessments. Lastly, a correlational analysis with subject- and clinician-rated outcomes was performed to understand the clinical meaning of automated measures. RESULTS: Of the 23 measures analyzed, the measures of word legibility and peak accelerations distinguished subjects with WC from healthy volunteers with high sensitivity and specificity and demonstrated smaller sample sizes suitable for rare disease studies, and the kinematic measures showed high reliability across repeat visits, while both word legibility and peak accelerations measures showed significant correlations with the subject- and clinician-rated outcomes. CONCLUSIONS: Novel automated measures that capture key aspects of the disease and are suitable for use in clinical research studies of WC dystonia were identified. © 2022 International Parkinson and Movement Disorder Society.


Assuntos
Distúrbios Distônicos , Humanos , Distúrbios Distônicos/diagnóstico , Doenças Raras , Reprodutibilidade dos Testes , Ensaios Clínicos como Assunto
3.
Surg Endosc ; 37(6): 4641-4650, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36862171

RESUMO

BACKGROUND: No platform for objective, synchronous and on-line evaluation of both intraoperative error and surgeon physiology yet exists. Electrokardiogram (EKG) metrics have been associated with cognitive and affective features that are known to impact surgical performance but have not yet been analyzed in conjunction with real-time error signals using objective, real-time methods. METHODS: EKGs and operating console point-of-views (POVs) for fifteen general surgery residents and five non-medically trained participants were captured during three simulated robotic-assisted surgery (RAS) procedures. Time and frequency-domain EKG statistics were extracted from recorded EKGs. Intraoperative errors were detected from operating console POV videos. EKG statistics were synchronized with intraoperative error signals. RESULTS: Relative to personalized baselines, IBI, SDNN and RMSSD decreased 0.15% (S.E. 3.603e-04; P = 3.25e-05), 3.08% (S.E. 1.603e-03; P < 2e-16) and 1.19% (S.E. 2.631e-03; P = 5.66e-06), respectively, during error. Relative LF RMS power decreased 1.44% (S.E. 2.337e-03; P = 8.38e-10), and relative HF RMS power increased 5.51% (S.E. 1.945e-03; P < 2e-16). CONCLUSIONS: Use of a novel, on-line biometric and operating room data capture and analysis platform enabled detection of distinct operator physiological changes during intraoperative errors. Monitoring operator EKG metrics during surgery may help improve patient outcomes through real-time assessments of intraoperative surgical proficiency and perceived difficulty as well as inform personalized surgical skills development.


Assuntos
Laparoscopia , Procedimentos Cirúrgicos Robóticos , Cirurgiões , Humanos , Procedimentos Cirúrgicos Robóticos/métodos , Salas Cirúrgicas , Laparoscopia/métodos
4.
Psychother Psychosom ; 91(2): 94-106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34551415

RESUMO

INTRODUCTION: Emotional dysregulation constitutes a serious public health problem in need of novel transdiagnostic treatments. OBJECTIVE: To this aim, we developed and tested a one-time intervention that integrates behavioral skills training with concurrent repetitive transcranial magnetic stimulation (rTMS). METHODS: Forty-six adults who met criteria for at least one DSM-5 disorder and self-reported low use of cognitive restructuring (CR) were enrolled in a randomized, double-blind, sham-controlled trial that used a between-subjects design. Participants were taught CR and underwent active rTMS applied at 10 Hz over the right (n = 17) or left (n = 14) dorsolateral prefrontal cortex (dlPFC) or sham rTMS (n = 15) while practicing reframing and emotional distancing in response to autobiographical stressors. RESULTS: Those who received active left or active right as opposed to sham rTMS exhibited enhanced regulation (ds = 0.21-0.62) as measured by psychophysiological indices during the intervention (higher high-frequency heart rate variability, lower regulation duration). Those who received active rTMS over the left dlPFC also self-reported reduced distress throughout the intervention (d = 0.30), higher likelihood to use CR, and lower daily distress during the week following the intervention. The procedures were acceptable and feasible with few side effects. CONCLUSIONS: These findings show that engaging frontal circuits simultaneously with cognitive skills training and rTMS may be clinically feasible, well-tolerated and may show promise for the treatment of transdiagnostic emotional dysregulation. Larger follow-up studies are needed to confirm the efficacy of this novel therapeutic approach.


Assuntos
Córtex Pré-Frontal , Estimulação Magnética Transcraniana , Adulto , Terapia de Reestruturação Cognitiva , Método Duplo-Cego , Humanos , Estimulação Magnética Transcraniana/métodos , Resultado do Tratamento
5.
J Neurosci ; 40(35): 6770-6778, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32690618

RESUMO

The brain is an inherently dynamic system, and much work has focused on the ability to modify neural activity through both local perturbations and changes in the function of global network ensembles. Network controllability is a recent concept in network neuroscience that purports to predict the influence of individual cortical sites on global network states and state changes, thereby creating a unifying account of local influences on global brain dynamics. While this notion is accepted in engineering science, it is subject to ongoing debates in neuroscience as empirical evidence linking network controllability to brain activity and human behavior remains scarce. Here, we present an integrated set of multimodal brain-behavior relationships derived from fMRI, diffusion tensor imaging, and online repetitive transcranial magnetic stimulation (rTMS) applied during an individually calibrated working memory task performed by individuals of both sexes. The modes describing the structural network system dynamics showed direct relationships to brain activity associated with task difficulty, with difficult-to-reach modes contributing to functional brain states in the hard task condition. Modal controllability (a measure quantifying the contribution of difficult-to-reach modes) at the stimulated site predicted both fMRI activations associated with increasing task difficulty and rTMS benefits on task performance. Furthermore, fMRI explained 64% of the variance between modal controllability and the working memory benefit associated with 5 Hz online rTMS. These results therefore provide evidence toward the functional validity of network control theory, and outline a clear technique for integrating structural network topology and functional activity to predict the influence of stimulation on subsequent behavior.SIGNIFICANCE STATEMENT The network controllability concept proposes that specific cortical nodes are able to steer the brain into certain physiological states. By applying external perturbation to these control nodes, it is theorized that brain stimulation is able to selectively target difficult-to-reach states, potentially aiding processing and improving performance on cognitive tasks. The current study used rTMS and fMRI during a working memory task to test this hypothesis. We demonstrate that network controllability correlates with fMRI modulation because of working memory load and with the behavioral improvements that result from a multivisit intervention using 5 Hz rTMS. This study demonstrates the validity of network controllability and offers a new targeting approach to improve efficacy.


Assuntos
Encéfalo/fisiologia , Conectoma , Memória de Curto Prazo , Adulto , Imagem de Tensor de Difusão , Feminino , Humanos , Masculino , Modelos Neurológicos , Estimulação Magnética Transcraniana
6.
J Cogn Neurosci ; 33(7): 1253-1270, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34496403

RESUMO

The fusion of immersive virtual reality, kinematic movement tracking, and EEG offers a powerful test bed for naturalistic neuroscience research. Here, we combined these elements to investigate the neuro-behavioral mechanisms underlying precision visual-motor control as 20 participants completed a three-visit, visual-motor, coincidence-anticipation task, modeled after Olympic Trap Shooting and performed in immersive and interactive virtual reality. Analyses of the kinematic metrics demonstrated learning of more efficient movements with significantly faster hand RTs, earlier trigger response times, and higher spatial precision, leading to an average of 13% improvement in shot scores across the visits. As revealed through spectral and time-locked analyses of the EEG beta band (13-30 Hz), power measured prior to target launch and visual-evoked potential amplitudes measured immediately after the target launch correlated with subsequent reactive kinematic performance in the shooting task. Moreover, both launch-locked and shot/feedback-locked visual-evoked potentials became earlier and more negative with practice, pointing to neural mechanisms that may contribute to the development of visual-motor proficiency. Collectively, these findings illustrate EEG and kinematic biomarkers of precision motor control and changes in the neurophysiological substrates that may underlie motor learning.


Assuntos
Realidade Virtual , Biomarcadores , Humanos , Aprendizagem , Desempenho Psicomotor , Tempo de Reação
7.
Cogn Affect Behav Neurosci ; 20(5): 1090-1102, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32839957

RESUMO

We recently proposed a neurocognitive model of distancing-an emotion regulation tactic-with a focus on the lateral parietal cortex. Although this brain area has been implicated in both cognitive control and self-projection processes during distancing, fMRI work suggests that these processes may be dissociable here. This preregistered (NCT03698591) study tested the contribution of left temporoparietal junction (TPJ) to distancing using repetitive transcranial magnetic stimulation. We hypothesized that inhibiting left TPJ would decrease the efficiency of distancing but not distraction, another regulation tactic with similar cognitive control requirements, thus implicating this region in the self-projection processes unique to distancing. Active and sham continuous theta burst stimulation (cTBS) were applied to 30 healthy adults in a single-session crossover design. Tactic efficiency was measured using online reports of valence and effort. The stimulation target was established from the group TPJ fMRI activation peak in an independent sample using the same distancing task, and anatomical MRI scans were used for individual targeting. Analyses employed both repeated-measures ANOVA and analytic procedures tailored to crossover designs. Irrespective of cTBS, distancing led to greater decreases in negative valence over time relative to distraction, and distancing effort decreased over time while distraction effort remained stable. Exploratory analyses also revealed that active cTBS made distancing more effortful, but not distraction. Thus, left TPJ seems to support self-projection processes in distancing, and these processes may be facilitated by repeated use. These findings help to clarify the role of lateral parietal cortex in distancing and inform applications of distancing and distraction.


Assuntos
Afeto/fisiologia , Atenção/fisiologia , Regulação Emocional/fisiologia , Lobo Parietal/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Estimulação Magnética Transcraniana , Adolescente , Adulto , Estudos Cross-Over , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
8.
Cereb Cortex ; 26(1): 1-11, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25139941

RESUMO

Adaptive choice behavior depends critically on identifying and learning from outcome-predicting cues. We hypothesized that attention may be preferentially directed toward certain outcome-predicting cues. We studied this possibility by analyzing event-related potential (ERP) responses in humans during a probabilistic decision-making task. Participants viewed pairs of outcome-predicting visual cues and then chose to wager either a small (i.e., loss-minimizing) or large (i.e., gain-maximizing) amount of money. The cues were bilaterally presented, which allowed us to extract the relative neural responses to each cue by using a contralateral-versus-ipsilateral ERP contrast. We found an early lateralized ERP response, whose features matched the attention-shift-related N2pc component and whose amplitude scaled with the learned reward-predicting value of the cues as predicted by an attention-for-reward model. Consistently, we found a double dissociation involving the N2pc. Across participants, gain-maximization positively correlated with the N2pc amplitude to the most reliable gain-predicting cue, suggesting an attentional bias toward such cues. Conversely, loss-minimization was negatively correlated with the N2pc amplitude to the most reliable loss-predicting cue, suggesting an attentional avoidance toward such stimuli. These results indicate that learned stimulus-reward associations can influence rapid attention allocation, and that differences in this process are associated with individual differences in economic decision-making performance.


Assuntos
Atenção/fisiologia , Encéfalo/fisiologia , Tomada de Decisões/fisiologia , Potenciais Evocados/fisiologia , Recompensa , Percepção Visual/fisiologia , Adolescente , Adulto , Mapeamento Encefálico/métodos , Sinais (Psicologia) , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Percepção Espacial/fisiologia , Adulto Jovem
9.
J Neurosci ; 33(16): 7011-9, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23595758

RESUMO

Success in many decision-making scenarios depends on the ability to maximize gains and minimize losses. Even if an agent knows which cues lead to gains and which lead to losses, that agent could still make choices yielding suboptimal rewards. Here, by analyzing event-related potentials (ERPs) recorded in humans during a probabilistic gambling task, we show that individuals' behavioral tendencies to maximize gains and to minimize losses are associated with their ERP responses to the receipt of those gains and losses, respectively. We focused our analyses on ERP signals that predict behavioral adjustment: the frontocentral feedback-related negativity (FRN) and two P300 (P3) subcomponents, the frontocentral P3a and the parietal P3b. We found that, across participants, gain maximization was predicted by differences in amplitude of the P3b for suboptimal versus optimal gains (i.e., P3b amplitude difference between the least good and the best gains). Conversely, loss minimization was predicted by differences in the P3b amplitude to suboptimal versus optimal losses (i.e., difference between the worst and the least bad losses). Finally, we observed that the P3a and P3b, but not the FRN, predicted behavioral adjustment on subsequent trials, suggesting a specific adaptive mechanism by which prior experience may alter ensuing behavior. These findings indicate that individual differences in gain maximization and loss minimization are linked to individual differences in rapid neural responses to monetary outcomes.


Assuntos
Encéfalo/fisiologia , Tomada de Decisões/fisiologia , Retroalimentação Psicológica , Jogo de Azar , Recompensa , Adolescente , Adulto , Sinais (Psicologia) , Potenciais Evocados/fisiologia , Feminino , Jogos Experimentais , Humanos , Masculino , Valor Preditivo dos Testes , Probabilidade , Estatística como Assunto , Adulto Jovem
10.
J ECT ; 30(2): 165-76, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24820942

RESUMO

For many patients with neuropsychiatric illnesses, standard psychiatric treatments with mono or combination pharmacotherapy, psychotherapy, and transcranial magnetic stimulation are ineffective. For these patients with treatment-resistant neuropsychiatric illnesses, a main therapeutic option is electroconvulsive therapy (ECT). Decades of research have found ECT to be highly effective; however, it can also result in adverse neurocognitive effects. Specifically, ECT results in disorientation after each session, anterograde amnesia for recently learned information, and retrograde amnesia for previously learned information. Unfortunately, the neurocognitive effects and underlying mechanisms of action of ECT remain poorly understood. The purpose of this paper was to synthesize the multiple moderating and mediating factors that are thought to underlie the neurocognitive effects of ECT into a coherent model. Such factors include demographic and neuropsychological characteristics, neuropsychiatric symptoms, ECT technical parameters, and ECT-associated neurophysiological changes. Future research is warranted to evaluate and test this model, so that these findings may support the development of more refined clinical seizure therapy delivery approaches and efficacious cognitive remediation strategies to improve the use of this important and widely used intervention tool for neuropsychiatric diseases.


Assuntos
Transtornos Cognitivos/etiologia , Eletroconvulsoterapia/efeitos adversos , Transtornos Mentais/terapia , Eletroconvulsoterapia/métodos , Humanos , Transtornos Mentais/complicações , Testes Neuropsicológicos , Fatores de Risco
11.
Front Hum Neurosci ; 18: 1310320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384332

RESUMO

Measurement of the input-output (IO) curves of motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) can be used to assess corticospinal excitability and motor recruitment. While IO curves have been used to study disease and pharmacology, few studies have compared the IO curves across the body. This study sought to characterize IO curve parameters across the dominant and non-dominant sides of upper and lower limbs in healthy participants. Laterality preferences were assessed in eight healthy participants and IO curves were measured bilaterally for the first dorsal interosseous (FDI), biceps brachii (BB), and tibialis anterior (TA) muscles. Results show that FDI has lower motor threshold than BB which is, in turn, lower than TA. In addition, both BB and TA have markedly shallower logarithmic IO curve slopes from small to large MEP responses than FDI. After normalizing these slopes by their midpoints to account for differences in motor thresholds, which could result from geometric factors such as the target depth, large differences in logarithmic slopes remain present between all three muscles. The differences in slopes between the muscles could not be explained by differences in normalized IO curve spreads, which relate to the extent of the cortical representation and were comparable across the muscles. The IO curve differences therefore suggest muscle-dependent variations in TMS-evoked recruitment across the primary motor cortex, which should be considered when utilizing TMS-evoked MEPs to study disease states and treatment effects.

12.
Clin Pharmacol Ther ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39054770

RESUMO

(R,S)-Ketamine (ketamine) is a dissociative anesthetic that also possesses analgesic and antidepressant activity. Undesirable dissociative side effects and misuse potential limit expanded use of ketamine in several mental health disorders despite promising clinical activity and intensifying medical need. (2R,6R)-Hydroxynorketamine (RR-HNK) is a metabolite of ketamine that lacks anesthetic and dissociative activity but maintains antidepressant and analgesic activity in multiple preclinical models. To enable future assessments in selected human indications, we report the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD) of RR-HNK in a Phase 1 study in healthy volunteers (NCT04711005). A six-level single-ascending dose (SAD) (0.1-4 mg/kg) and a two-level multiple ascending dose (MAD) (1 and 2 mg/kg) study was performed using a 40-minute IV administration emulating the common practice for ketamine administration for depression. Safety assessments showed RR-HNK possessed a minimal adverse event profile and no serious adverse events at all doses examined. Evaluations of dissociation and sedation demonstrated that RR-HNK did not possess anesthetic or dissociative characteristics in the doses examined. RR-HNK PK parameters were measured in both the SAD and MAD studies and exhibited dose-proportional increases in exposure. Quantitative electroencephalography (EEG) measurements collected as a PD parameter based on preclinical findings and ketamine's established effect on gamma-power oscillations demonstrated increases of gamma power in some participants at the lower/mid-range doses examined. Cerebrospinal fluid examination confirmed RR-HNK exposure within the central nervous system (CNS). Collectively, these data demonstrate RR-HNK is well tolerated with an acceptable PK profile and promising PD outcomes to support the progression into Phase 2.

13.
Neuropsychopharmacology ; 48(1): 113-120, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35810199

RESUMO

Activity-dependent synaptic plasticity is a ubiquitous property of the nervous system that allows neurons to communicate and change their connections as a function of past experiences. Through reweighting of synaptic strengths, the nervous system can remodel itself, giving rise to durable memories that create the biological basis for mental function. In healthy individuals, synaptic plasticity undergoes characteristic developmental and aging trajectories. Dysfunctional plasticity, in turn, underlies a wide spectrum of neuropsychiatric disorders including depression, schizophrenia, addiction, and posttraumatic stress disorder. From a mechanistic standpoint, synaptic plasticity spans the gamut of spatial and temporal scales, from microseconds to the lifespan, from microns to the entire nervous system. With the numbers and strengths of synapses changing on such wide scales, there is an important need to develop measurement techniques with complimentary sensitivities and a growing number of approaches are now being harnessed for this purpose. Through hemodynamic measures, structural and tracer imaging, and noninvasive neuromodulation, it is possible to image structural and functional changes that underlie synaptic plasticity and associated behavioral learning. Here we review the mechanisms of neural plasticity and the historical and future trends in techniques that allow imaging of synaptic changes that accompany psychiatric disorders, highlighting emerging therapeutics and the challenges and opportunities accompanying this burgeoning area of study.


Assuntos
Saúde Mental , Plasticidade Neuronal , Humanos , Plasticidade Neuronal/fisiologia , Sinapses/fisiologia , Neurônios/fisiologia , Aprendizagem/fisiologia
14.
Brain Sci ; 13(11)2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-38002530

RESUMO

Major depressive disorder (MDD) is a highly prevalent, debilitating disorder with a high rate of treatment resistance. One strategy to improve treatment outcomes is to identify patient-specific, pre-intervention factors that can predict treatment success. Neurophysiological measures such as electroencephalography (EEG), which measures the brain's electrical activity from sensors on the scalp, offer one promising approach for predicting treatment response for psychiatric illnesses, including MDD. In this study, a secondary data analysis was conducted on the publicly available Two Decades Brainclinics Research Archive for Insights in Neurophysiology (TDBRAIN) database. Logistic regression modeling was used to predict treatment response, defined as at least a 50% improvement on the Beck's Depression Inventory, in 119 MDD patients receiving repetitive transcranial magnetic stimulation (rTMS). The results show that both age and baseline symptom severity were significant predictors of rTMS treatment response, with older individuals and more severe depression scores associated with decreased odds of a positive treatment response. EEG measures contributed predictive power to these models; however, these improvements in outcome predictability only trended towards statistical significance. These findings provide confirmation of previous demographic and clinical predictors, while pointing to EEG metrics that may provide predictive information in future studies.

15.
Transl Psychiatry ; 13(1): 390, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38097566

RESUMO

Over the past two decades noninvasive brain stimulation (NIBS) techniques have emerged as powerful therapeutic options for a range of psychiatric and neurological disorders. NIBS are hypothesized to rebalance pathological brain networks thus reducing symptoms and improving functioning. This development has been fueled by controlled studies with increasing size and rigor aiming to characterize how treatments induce clinically effective change. Clinical trials of NIBS for specific indications have resulted in federal approval for unipolar depression, bipolar depression, smoking cessation, and obsessive-compulsive disorder in the United States, and several other indications worldwide. As a rapidly emerging field, there are numerous pre-clinical indications currently in development using a variety of electrical and magnetic, non-convulsive, and convulsive approaches. This review discusses the state-of-the-science surrounding promising avenues of NIBS currently in pre-approval stages for non-affective psychiatric disorders. We consider emerging therapies for psychosis, anxiety disorders, obsessive-compulsive disorder, and borderline personality disorder, utilizing transcranial magnetic stimulation (TMS), transcranial direct current stimulation (tDCS), and magnetic seizure therapy (MST), with an additional brief section for early-stage techniques including transcranial focused ultrasound stimulation (tFUS) and transcranial alternating current stimulation (tACS). As revealed in this review, there is considerable promise across all four psychiatric indications with different NIBS approaches. Positive findings are notable for the treatment of psychosis using tDCS, MST, and rTMS. While rTMS is already FDA approved for the treatment of obsessive-compulsive disorder, methodologies such as tDCS also demonstrate potential in this condition. Emerging techniques show promise for treating non-affective disorders likely leading to future regulatory approvals.


Assuntos
Transtorno Depressivo , Transtorno Obsessivo-Compulsivo , Estimulação Transcraniana por Corrente Contínua , Humanos , Estimulação Transcraniana por Corrente Contínua/métodos , Estimulação Magnética Transcraniana/métodos , Encéfalo/fisiologia , Transtorno Depressivo/terapia , Transtorno Obsessivo-Compulsivo/terapia
16.
medRxiv ; 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37886548

RESUMO

Tobacco-related deaths exceed those resulting from homicides, suicides, motor vehicle accidence, alcohol consumption, illicit substance use, and acquired immunodeficiency syndrome (AIDS), combined. Amongst U.S. veterans, this trend is particularly concerning given that those suffering from posttraumatic stress disorder (PTSD)-about 11% of those receiving care from the Department of Veterans Affairs (VA)-have triple the risk of developing tobacco use disorder (TUD). The most efficacious strategies being used at the VA for smoking cessation only result in a 23% abstinence rate, and veterans with PTSD only achieve a 4.5% abstinence rate. Therefore, there is a critical need to develop more effective treatments for smoking cessation. Recent studies have revealed the insula as integrally involved in the neurocircuitry of TUD, specifically showing that individuals with brain lesions involving this region had drastically improved quit rates. Some of these studies show a probability of quitting up to 5 times greater compared to non-insula lesioned regions). Altered activity of the insula may be involved in the disruption of the salience network's (SN) connectivity to the executive control network (ECN), which compromises that patient's ability to switch between interoceptive states focused on cravings to executive and cognitive control. Thus, we propose a feasibility phase II randomized controlled trial (RCT) to study a patterned form of repetitive transcranial magnetic stimulation (rTMS), intermittent theta burst stimulation (iTBS), at 90% of the subject's resting motor threshold (rMT) applied over a region in the right post-central gyrus most functionally connected to the right posterior insula. We hypothesize that by increasing functional connectivity between the SN with the ECN to enhance executive control and by decreasing connectivity with the default mode network (DMN) to reduce interoceptive focus on withdrawal symptoms, we will improve smoking cessation outcomes. Fifty eligible veterans with comorbid TUD and PTSD will be randomly assigned to two conditions: active-iTBS + cognitive behavioral therapy (CBT) + nicotine replacement therapy (NRT) (n=25) or sham-iTBS + CBT + NRT (n=25). The primary outcome, feasibility, will be determined by achieving a recruitment of 50 participants and retention rate of 80%. The success of iTBS will be evaluated through self-reported nicotine use, cravings, withdrawal symptoms, and abstinence following quit date (confirmed by bioverification) along with evaluation for target engagement through neuroimaging changes, specifically connectivity differences between the insula and other regions of interest.

17.
J Affect Disord ; 301: 378-389, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35038479

RESUMO

BACKGROUND: Transdiagnostic clinical emotional dysregulation is a key component of many mental health disorders and offers an avenue to address multiple disorders with one transdiagnostic treatment. In the current study, we pilot an intervention that combines a one-time teaching and practice of cognitive restructuring (CR) with repetitive transcranial magnetic stimulation (rTMS), targeted based on functional magnetic resonance imaging (fMRI). METHODS: Thirty-seven clinical adults who self-reported high emotional dysregulation were enrolled in this randomized, double-blind, placebo-controlled trial. fMRI was collected as participants were reminded of lifetime stressors and asked to downregulate their distress using CR tactics. fMRI BOLD data were analyzed to identify the cluster of voxels within the left dorsolateral prefrontal cortex (dlPFC) with the highest activation when participants attempted to downregulate, versus passively remember, distressing memories. Participants underwent active or sham rTMS (10 Hz) over the left dlPFC target while practicing CR following emotional induction using recent autobiographical stressors. RESULTS: Receiving active versus sham rTMS led to significantly higher high frequency heart rate variability during regulation, lower regulation duration during the intervention, and higher likelihood to use CR during the week following the intervention. There were no differences between conditions when administering neurostimulation alone without the CR skill and compared to sham. Participants in the sham versus active condition experienced less distress the week after the intervention. There were no differences between conditions at the one-month follow up. CONCLUSION: This study demonstrated that combining active rTMS with emotion regulation training for one session significantly enhances emotion regulation and augments the impact of training for as long as a week. These findings are a promising step towards a combined intervention for transdiagnostic emotion dysregulation.


Assuntos
Terapia de Reestruturação Cognitiva , Imageamento por Ressonância Magnética , Adulto , Método Duplo-Cego , Humanos , Córtex Pré-Frontal , Estimulação Magnética Transcraniana/métodos , Resultado do Tratamento
18.
Front Neurogenom ; 3: 1052411, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-38235463

RESUMO

Surgeons operate in mentally and physically demanding workspaces where the impact of error is highly consequential. Accurately characterizing the neurophysiology of surgeons during intraoperative error will help guide more accurate performance assessment and precision training for surgeons and other teleoperators. To better understand the neurophysiology of intraoperative error, we build and deploy a system for intraoperative error detection and electroencephalography (EEG) signal synchronization during robot-assisted surgery (RAS). We then examine the association between EEG data and detected errors. Our results suggest that there are significant EEG changes during intraoperative error that are detectable irrespective of surgical experience level.

19.
J Cogn Neurosci ; 23(9): 2620-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20849233

RESUMO

Humans are constantly confronted with environmental stimuli that conflict with task goals and can interfere with successful behavior. Prevailing theories propose the existence of cognitive control mechanisms that can suppress the processing of conflicting input and enhance that of the relevant input. However, the temporal cascade of brain processes invoked in response to conflicting stimuli remains poorly understood. By examining evoked electrical brain responses in a novel, hemifield-specific, visual-flanker task, we demonstrate that task-irrelevant conflicting stimulus input is quickly detected in higher level executive regions while simultaneously inducing rapid, recurrent modulation of sensory processing in the visual cortex. Importantly, however, both of these effects are larger for individuals with greater incongruency-related RT slowing. The combination of neural activation patterns and behavioral interference effects suggest that this initial sensory modulation induced by conflicting stimulus inputs reflects performance-degrading attentional distraction because of their incompatibility rather than any rapid task-enhancing cognitive control mechanisms. The present findings thus provide neural evidence for a model in which attentional distraction is the key initial trigger for the temporal cascade of processes by which the human brain responds to conflicting stimulus input in the environment.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Conflito Psicológico , Potenciais Evocados Visuais/fisiologia , Adulto , Análise de Variância , Eletroencefalografia , Feminino , Lateralidade Funcional/fisiologia , Humanos , Masculino , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Vias Visuais/fisiologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa