Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Cell Biochem ; 479(3): 693-705, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37166541

RESUMO

Over the past few years, the prevalence of neurodegenerative diseases (NDD) has increased dramatically. The community health system is burdened by the high healthcare costs associated with NDD. Superoxide dismutase (SOD) is a type of metalloenzyme that possesses a distinct characteristic of protecting the body from oxidative stress through antioxidants. In this way, SOD supplementation may activate the endogenous antioxidant mechanism in various pathological conditions and could be used to neutralize free radical excess. Several factors are responsible for damaging DNA and RNA in the body, including the overproduction of reactive species, particularly reactive oxygen species (ROS) and reactive nitrogen species (RNS). Excessive ROS/RNS have deleterious effects on mitochondria and their metabolic processes, mainly through increased mitochondrial proteins, lipids and DNA oxidation. Studies have shown that oxidative stress is implicated in the etiology of many diseases, including NDD. It is thought that anti-inflammatory compounds, particularly phytochemicals, can interfere with these pathways and regulate inflammation. Extensive experimental and clinical research has proven that curcumin (Cur) has anti-inflammatory and anti-neurologic properties. In this review, we have compiled the available data on Cur's anti-inflammatory properties, paying special attention to its therapeutic impact on NDD through SOD.


Assuntos
Curcumina , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , DNA/metabolismo , Doenças Neurodegenerativas/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/metabolismo
2.
J Sleep Res ; 30(6): e13347, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33913199

RESUMO

Neuroimaging and genetics studies have advanced our understanding of the neurobiology of sleep and its disorders. However, individual studies usually have limitations to identifying consistent and reproducible effects, including modest sample sizes, heterogeneous clinical characteristics and varied methodologies. These issues call for a large-scale multi-centre effort in sleep research, in order to increase the number of samples, and harmonize the methods of data collection, preprocessing and analysis using pre-registered well-established protocols. The Enhancing NeuroImaging Genetics through Meta-Analysis (ENIGMA) consortium provides a powerful collaborative framework for combining datasets across individual sites. Recently, we have launched the ENIGMA-Sleep working group with the collaboration of several institutes from 15 countries to perform large-scale worldwide neuroimaging and genetics studies for better understanding the neurobiology of impaired sleep quality in population-based healthy individuals, the neural consequences of sleep deprivation, pathophysiology of sleep disorders, as well as neural correlates of sleep disturbances across various neuropsychiatric disorders. In this introductory review, we describe the details of our currently available datasets and our ongoing projects in the ENIGMA-Sleep group, and discuss both the potential challenges and opportunities of a collaborative initiative in sleep medicine.


Assuntos
Encéfalo , Encéfalo/diagnóstico por imagem , Humanos , Neuroimagem , Tamanho da Amostra , Privação do Sono
3.
Prostaglandins Other Lipid Mediat ; 157: 106587, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34517113

RESUMO

Neurological disorders result in disability and morbidity. Neuroinflammation is a key factor involved in progression or resolution of a series of neurological disorders like Huntington disease (HD), Parkinson's disease (PD), Alzheimer's disease (AD), Spinal Cord Injury (SCI), and Seizure. Thereby, anti-inflammatory drugs have been developed to improve the neurodegenerative impairments. Licofelone is an approved osteoarthritis drug that inhibits both the COX (cyclooxygenase) and 5-LOX (lipoxygenase) pathways. Licofelone has pain-relieving and anti-inflammatory effects and it was shown to have neuroprotective properties in the central nervous system, which is implicated in its regulatory effect on the COX/5-LOX pathway, inflammatory cytokines, and immune responses. In this study, we briefly review the various features of neurological disorders and the function of COX/LOX in their flare up and current pharmacological products for their management. Moreover, this review attempts to summarize potential therapeutics that target the immune responses within the central nervous system. A better understanding of the interactions between Licofelone and the nervous systems will be crucial to demonstrate the possible efficacy of Licofelone in neurological disorders.


Assuntos
Inibidores de Lipoxigenase , Doenças do Sistema Nervoso , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/farmacologia , Humanos , Inibidores de Lipoxigenase/farmacologia , Inibidores de Lipoxigenase/uso terapêutico , Doenças do Sistema Nervoso/tratamento farmacológico , Pirróis
4.
Biomed Mater ; 19(4)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38768605

RESUMO

With the increasing prevalence of diabetes, the healing of diabetic wounds has become a significant challenge for both healthcare professionals and patients. Recognizing the urgent need for effective solutions, it is crucial to develop suitable scaffolds specifically tailored for diabetic wound healing. In line with this objective, we have developed novel hybrid nanofibrous scaffolds by combining polyvinyl alcohol/chitosan (PVA/CS) and gelatin/poly(ε-caprolactone) (Gel/PCL) polymers through a double-nozzle electrospinning technique. In this study, we investigated the influence of the Gel/PCL blend ratio on the properties of the resulting nanofibers. Three different hybrid scaffold structures were examined: Gel/PCL (80:20)-PVA/CS (80:20), Gel/PCL (50:50)-PVA/CS (80:20), and Gel/PVA (20:80)-PVA/CS (80:20). Our findings demonstrate that the electrospun nanofibers of PVA/CS (80:20)-Gel/PCL (80:20) exhibited optimal mechanical performance, with a contact angle of approximately 54° and a diameter of 183 nm. Considering the crucial role of inhibiting bacterial adhesion in the success of implanted materials, we evaluated the cytocompatibility of the hybrid electrospun nanofibers using mouse fibroblast cells (L-929 cells). The in vitro cytotoxicity results obtained from L-929 fibroblast cell culture on the hybrid scaffolds revealed enhanced cell proliferation and appropriate cell morphology on the PVA/CS (80:20)-Gel/PCL (80:20) sample, indicating its capability to support tissue cell integration. Based on the information obtained from this study, the fabricated hybrid scaffold holds great promise for diabetic ulcer healing. Its optimal mechanical properties, suitable contact angle, and favorable cytocompatibility highlight its potential as a valuable tool in the field of diabetic wound healing. The development of such hybrid scaffolds represents a significant step forward in addressing the challenges associated with diabetic wound care.


Assuntos
Quitosana , Gelatina , Nanofibras , Poliésteres , Álcool de Polivinil , Alicerces Teciduais , Cicatrização , Nanofibras/química , Álcool de Polivinil/química , Gelatina/química , Cicatrização/efeitos dos fármacos , Quitosana/química , Poliésteres/química , Alicerces Teciduais/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Animais , Teste de Materiais , Fibroblastos , Humanos , Proliferação de Células/efeitos dos fármacos , Camundongos , Engenharia Tecidual/métodos
5.
Mol Neurobiol ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38427213

RESUMO

Inflammation in the nervous system is one of the key features of many neurodegenerative diseases. It is increasingly being identified as a critical pathophysiological primitive mechanism associated with chronic neurodegenerative diseases following traumatic brain injury (TBI). Phytochemicals have a wide range of clinical properties due to their antioxidant and anti-inflammatory effects. Currently, there are few drugs available for the treatment of neurodegenerative diseases other than symptomatic relief. Numerous studies have shown that plant-derived compounds, in particular polyphenols, protect against various neurodegenerative diseases and are safe for consumption. Polyphenols exert protective effects on TBI via restoration of nuclear factor kappa B (NF-κB), toll-like receptor-4 (TLR4), and Nod-like receptor family proteins (NLRPs) pathways. In addition, these phytochemicals and their derivatives upregulate the phosphatidylinositol-3-Kinase/Protein Kinase B (PI3K/AKT) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways, which have critical functions in modulating TBI symptoms. There is supporting evidence that medicinal plants and phytochemicals are protective in different TBI models, though future clinical trials are needed to clarify the precise mechanisms and functions of different polyphenolic compounds in TBI.

6.
Diabetes Metab Syndr ; 18(2): 102949, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38308863

RESUMO

AIMS: In this narrative review, we have analyzed and synthesized current studies relating to the effects of anti-diabetic drugs on traumatic brain injury (TBI) complications. METHODS: Eligible studies were collected from Scopus, Google Scholar, PubMed, and Cochrane Library for clinical, in-vivo, and in-vitro studies published on the impact of anti-diabetic drugs on TBI. RESULTS: Traumatic brain injury (TBI) is a serious brain disease that is caused by any type of trauma. The pathophysiology of TBI is not yet fully understood, though physical injury and inflammatory events have been implicated in TBI progression. Several signaling pathways are known to play pivotal roles in TBI injuries, including Nuclear factor erythroid 2-related factor 2 (Nrf2), High mobility group box 1 protein/Nuclear factor kappa B (HMGB1/NF-κB), Adiponectin, Mammalian Target of Rapamycin (mTOR), Toll-Like Receptor (TLR), Wnt/ß-catenin, Janus Kinase/Signal Transducers and Activators of Transcription (JAK/STAT), Nod-like receptor protein3 (NLRP3) inflammasome, Phosphoglycerate kinase 1/Kelch-like ECH-associated protein 1 (PGK1/KEAP1)/Nrf2, and Mitogen-activated protein kinase (MAPK) . Recent studies suggest that oral anti-diabetic drugs such as biguanides, thiazolidinediones (TZDs), sulfonylureas (SUs), sodium-glucose cotransporter-2 inhibitors (SGLT2is), dipeptidyl peptidase-4 inhibitors (DPPIs), meglitinides, and alpha-glucosidase inhibitors (AGIs) could have beneficial effects in the management of TBI complications. These drugs may downregulate the inflammatory pathways and induce antioxidant signaling pathways, thus alleviating complications of TBI. CONCLUSION: Based on this comprehensive literature review, antidiabetic medications might be considered in the TBI treatment protocol. However, evidence from clinical trials in patients with TBI is still warranted.


Assuntos
Lesões Encefálicas Traumáticas , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fator 2 Relacionado a NF-E2/uso terapêutico , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico , Inflamação/complicações , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/metabolismo
7.
Curr Med Chem ; 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37691218

RESUMO

Turmerones are major bioactive compounds of Curcuma species with several beneficial pharmacological activities. In addition, various in vivo and in vitro studies noted that turmerones could affect different cytokines, metabolic pathways, and targets. Turmerones will have the potential to be a candidate agent to lessen many pathological and immunological conditions as a result of these pharmacological activities. In this review, we provided information about the pharmacological actions of turmerones using search engines such as PubMed, Google Scholar, Scopus, and Web of Science.

8.
Life (Basel) ; 12(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35629426

RESUMO

Adverse cardiovascular disease (CVD) outcomes, such as sudden cardiac death, acute myocardial infarction, and stroke, are often catastrophic. Statins are frequently used to attenuate the risk of CVD-associated morbidity and mortality through their impact on lipids and they may also have anti-inflammatory and other plaque-stabilization effects via different signaling pathways. Different statins, including atorvastatin, rosuvastatin, pravastatin, pitavastatin, and simvastatin, are administered to manage circulatory lipid levels. In addition, statins are potent inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase via modulating sirtuins (SIRTs). During the last two decades, SIRTs have been investigated in mammals and categorized as a family of nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases (HDACs) with significant oxidative stress regulatory function in cells-a key factor in extending cell lifespan. Recent work has demonstrated that statins upregulate SIRT1 and SIRT2 and downregulate SIRT6 in both in vitro and in vivo experiments and clinical trials. As statins show modulatory properties, especially in CVDs, future investigations are needed to delineate the role of SIRT family members in disease and to expand knowledge about the effects of statins on SIRTs. Here, we review what is currently known about the impact of statins on SIRTs and how these changes correlate with disease, particularly CVDs.

9.
Biomed Pharmacother ; 154: 113621, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36055110

RESUMO

Neuroinflammation is a key pathophysiological mechanism implicated in the neurodegenerative condition. One such condition implicating neuroinflammation is traumatic brain injury (TBI). Over the past decades, various alternative natural compounds, such as curcumin, have been investigated as novel therapeutic options to mitigate the pathophysiological pathways and clinical sequelae involved in TBI. As the main component of turmeric (Curcuma longa), curcumin has a broad range of clinical properties due to its considerable antioxidative and anti-inflammatory actions. This review discusses the pleiotropic mechanisms, the side effects, curcumin's delivery to the central nervous system (CNS), and its immunomodulatory and protective effects on TBI. Clinical trials, in vivo, and in vitro studies were extracted from different scientific databases, including PubMed, Scopus, and Google Scholar, to assess the effects of curcumin or its derivatives in TBI. Findings reveal that curcumin exhibited some protective effects on TBI via modulation of cell signaling pathways including toll-like receptor-4 (TLR-4), nuclear factor kappa B (NF-κB), and Nod-like receptor family proteins (NLRPs). Moreover, curcumin upregulates the brain-derived Neurotrophic Factor/Tropomyosin receptor kinase B (BDNF/TrkB) signaling pathway, phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT), nuclear factor erythroid 2-related factor 2 (Nrf2), which have crucial functions in modulation of TBI pathophysiological-mediated pathways. Curcumin displays beneficial immunomodulatory functions and protective capacities in different TBI models, although more clinical experiments are required to clarify curcumin's precise mechanisms and function in TBI.


Assuntos
Lesões Encefálicas Traumáticas , Curcumina , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas Traumáticas/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Humanos , NF-kappa B/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
10.
Antioxidants (Basel) ; 11(7)2022 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-35883764

RESUMO

Chronic diseases such as cardiovascular disease (CVD), atherosclerosis, chronic liver disease, and neurodegenerative diseases are major causes of mortality. These diseases have gained much attention due to their complications, and therefore novel approaches with fewer side effects are an important research topic. Free radicals and oxidative stress are involved in the molecular mechanisms of several diseases. Antioxidants can scavenge free radicals and mitigate their adverse effects. One of the most important antioxidant enzymes are paraoxonases (PONs). These enzymes perform a wide range of physiological activities ranging from drug metabolism to detoxification of neuroleptics. Paraoxonase-1 (PON1) is produced in the liver and then transferred to the bloodstream. It has been demonstrated that PON1 could have beneficial effects in numerous diseases such as atherosclerosis, CVD, diabetes mellitus, and neurodegenerative diseases by modulating relevant signalling pathways involved in inflammation and oxidative stress. These pathways include peroxisome proliferator-activated receptor gamma (PPAR-γ) and protein kinase B/nuclear factor kappa-light-chain-enhancer of activated B cells (AKT/NF-κB)-dependent signalling pathways. Increasing PON1 could potentially have protective effects and reduce the incidence of various diseases by modulating these signalling pathways. Several studies have reported that dietary factors are able to modulate PON1 expression and activity. This review aimed at summarizing the state of the art on the effects of dietary phytochemicals on PON1 enzyme activity and the relevant signalling pathways in different diseases.

11.
J Med Signals Sens ; 9(1): 50-58, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30967990

RESUMO

BACKGROUND: Force variability is related to many kinesiological and neuromuscular properties of the body. This study was conducted to evaluate the effect of type 2 diabetes mellitus (T2DM) and sex on the several fractal and entropy indices of force changing during the repetitive isokinetic exercise of knee flexion-extension. METHODS: Fifty individuals were allowed to participate in the study, and they consist of 18 patients with short-term T2DM, 12 patients with long-term T2DM, and 20 gender/body mass index/ankle imposed to brachial pressure index and physical activity index-matched healthy control (HC) individuals. Torque of knee flexion-extension was recorded for each cycle of 40 isokinetic repetitions at a velocity of 150°/s. The slope across the peak of torques and nonlinear fractal and entropy features in the time series was calculated. Two-way univariate analysis of variance was used to analyze the effect of the groups and gender on the variables. RESULTS: The slope of flexor peak torques was significantly less in the long-term T2DM than the other groups. However, the fractal features such as SD1 and 2 of Poincare plot and fractal dimension katz were significantly decreased in the T2DM groups than the HC and in the women than men. Alpha detrended fluctuation analysis and empirical hurts exponent increased in women of short-term T2DM than men. CONCLUSION: The force variability decreased in the T2DM as compared to HC and in women as compared to men. However, the randomness of force was significantly increased in women of short-term T2DM.

12.
Acupunct Med ; 34(1): 2-6, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26215770

RESUMO

BACKGROUND: Sleep disorder in haemodialysis patients can lead to disturbance in their psychosocial function and interpersonal relations, and reduced quality of life. The aim of the present study was to investigate the effect of acupressure on the quality of sleep of haemodialysis patients. METHODS: In a randomised controlled trial, 108 haemodialysis patients were randomly divided into three groups: true acupressure, placebo acupressure, and no treatment. The two acupressure groups received treatment three times a week for 4 weeks during dialysis. Routine care only was provided for the no treatment group. The main study outcome was sleep quality. RESULTS: The total Pittsburgh Sleep Quality Index score decreased significantly from 11.9±3.13 to 6.2±1.93 in the true acupressure group, from 11.3±3.69 to 10.6±3.82 in the sham acupressure group, and from 10.9±4.10 to 10.7±3.94 in the no treatment group. There was a significant difference between groups (p<0.001). CONCLUSIONS: Acupressure seems to have a positive effect on the sleep quality in haemodialysis patients. CLINICAL TRIAL REGISTRATION: IRCT201106145864N2.


Assuntos
Acupressão , Falência Renal Crônica/terapia , Pontos de Acupuntura , Adolescente , Adulto , Idoso , Feminino , Humanos , Falência Renal Crônica/fisiopatologia , Masculino , Pessoa de Meia-Idade , Qualidade de Vida , Diálise Renal/psicologia , Sono , Resultado do Tratamento , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa