Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 174(3): 636-648.e18, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-30017246

RESUMO

The ex vivo generation of platelets from human-induced pluripotent cells (hiPSCs) is expected to compensate donor-dependent transfusion systems. However, manufacturing the clinically required number of platelets remains unachieved due to the low platelet release from hiPSC-derived megakaryocytes (hiPSC-MKs). Here, we report turbulence as a physical regulator in thrombopoiesis in vivo and its application to turbulence-controllable bioreactors. The identification of turbulent energy as a determinant parameter allowed scale-up to 8 L for the generation of 100 billion-order platelets from hiPSC-MKs, which satisfies clinical requirements. Turbulent flow promoted the release from megakaryocytes of IGFBP2, MIF, and Nardilysin to facilitate platelet shedding. hiPSC-platelets showed properties of bona fide human platelets, including circulation and hemostasis capacities upon transfusion in two animal models. This study provides a concept in which a coordinated physico-chemical mechanism promotes platelet biogenesis and an innovative strategy for ex vivo platelet manufacturing.


Assuntos
Plaquetas/metabolismo , Técnicas de Cultura de Células/métodos , Trombopoese/fisiologia , Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Humanos , Hidrodinâmica , Células-Tronco Pluripotentes Induzidas/metabolismo , Megacariócitos/metabolismo , Megacariócitos/fisiologia
2.
Cell ; 175(1): 266-276.e13, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30166209

RESUMO

A fundamental challenge of biology is to understand the vast heterogeneity of cells, particularly how cellular composition, structure, and morphology are linked to cellular physiology. Unfortunately, conventional technologies are limited in uncovering these relations. We present a machine-intelligence technology based on a radically different architecture that realizes real-time image-based intelligent cell sorting at an unprecedented rate. This technology, which we refer to as intelligent image-activated cell sorting, integrates high-throughput cell microscopy, focusing, and sorting on a hybrid software-hardware data-management infrastructure, enabling real-time automated operation for data acquisition, data processing, decision-making, and actuation. We use it to demonstrate real-time sorting of microalgal and blood cells based on intracellular protein localization and cell-cell interaction from large heterogeneous populations for studying photosynthesis and atherothrombosis, respectively. The technology is highly versatile and expected to enable machine-based scientific discovery in biological, pharmaceutical, and medical sciences.


Assuntos
Citometria de Fluxo/métodos , Ensaios de Triagem em Larga Escala/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Aprendizado Profundo , Humanos
3.
Small ; 18(15): e2105414, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35233944

RESUMO

Border-nearing microrobots with self-propelling and navigating capabilities have promising applications in micromanipulation and bioengineering, because they can stimulate the surrounding fluid flow for object transportation. However, ensuring the biosafety of microrobots is a concurrent challenge in bioengineering applications. Here, macrophage template-based microrobots (cell robots) that can be controlled individually or in chain-like swarms are proposed, which can transport various objects. The cell robots are constructed using the phagocytic ability of macrophages to load nanomagnetic particles while maintaining their viability. The robots exhibit high position control accuracy and generate a flow field that can be used to transport microspheres and sperm when exposed to an external magnetic field near a wall. The cell robots can also form chain-like swarms to transport a large object (more than 100 times the volume). This new insight into the manipulation of macrophage-based cell robots provides a new concept by converting other biological cells into microrobots for micromanipulation in biomedical applications.


Assuntos
Robótica , Campos Magnéticos , Micromanipulação , Microesferas
4.
J Nanobiotechnology ; 20(1): 364, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933359

RESUMO

BACKGROUND: Magnetosomes (BMPs) are organelles of magnetotactic bacteria (MTB) that are responsible for mineralizing iron to form magnetite. In addition, BMP is an ideal biomaterial that is widely used in bio- and nano-technological applications, such as drug delivery, tumor detection and therapy, and immunodetection. The use of BMPs to create multifunctional nanocomposites would further expand the range of their applications. RESULTS: In this study, we firstly demonstrate that the extracted BMP can remineralize in vitro when it is exposed to AgNO3 solution, the silver ions (Ag+) were transported into the BMP biomembrane (MM) and mineralized into a silver crystal on one crystal plane of Fe3O4. Resulting in the rapid synthesis of an Ag-Fe3O4 hybrid BMP (BMP-Ag). The synergy between the biomembrane, Fe3O4 crystal, and unmineralized iron enabled the remineralization of BMPs at an Ag+ concentration ≥ 1.0 mg mL-1. The BMP-Ag displayed good biocompatibility and antibacterial activity. At a concentration of 2.0 mg/mL, the BMP-Ag and biomembrane removed Ag-Fe3O4 NPs inhibited the growth of gram-negative and gram-positive bacteria. Thus using BMP-Ag as a wound dressing can effectively enhance the contraction of infected wounds. CONCLUSIONS: This study represents the first successful attempt to remineralize organelles ex vivo, realizing the biosynthesis of hybrid BMP and providing an important advancement in the synthesis technology of multifunctional biological nanocomposites.


Assuntos
Magnetossomos , Óxido Ferroso-Férrico/química , Bactérias Gram-Negativas , Ferro/química , Magnetossomos/química , Prata/química
5.
Proc Natl Acad Sci U S A ; 116(32): 15842-15848, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31324741

RESUMO

Combining the strength of flow cytometry with fluorescence imaging and digital image analysis, imaging flow cytometry is a powerful tool in diverse fields including cancer biology, immunology, drug discovery, microbiology, and metabolic engineering. It enables measurements and statistical analyses of chemical, structural, and morphological phenotypes of numerous living cells to provide systematic insights into biological processes. However, its utility is constrained by its requirement of fluorescent labeling for phenotyping. Here we present label-free chemical imaging flow cytometry to overcome the issue. It builds on a pulse pair-resolved wavelength-switchable Stokes laser for the fastest-to-date multicolor stimulated Raman scattering (SRS) microscopy of fast-flowing cells on a 3D acoustic focusing microfluidic chip, enabling an unprecedented throughput of up to ∼140 cells/s. To show its broad utility, we use the SRS imaging flow cytometry with the aid of deep learning to study the metabolic heterogeneity of microalgal cells and perform marker-free cancer detection in blood.


Assuntos
Citometria de Fluxo/métodos , Imageamento Tridimensional , Análise Espectral Raman/métodos , Linhagem Celular Tumoral , Humanos , Microalgas/citologia , Microalgas/metabolismo , Coloração e Rotulagem
6.
Microsc Microanal ; 27(2): 392-399, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33446296

RESUMO

In this research, atomic force microscopy (AFM) with a flat tip cantilever is utilized to measure Young's modulus of a whole yeast cell (Saccharomyces cerevisiae BY4741). The results acquired from AFM are similar to those obtained using a microfluidic chip compression system. The mechanical properties of single yeast cells are important parameters which can be examined using AFM. Conventional studies apply AFM with a sharp cantilever tip to indent the cell and measure the force-indentation curve, from which Young's modulus can be calculated. However, sharp tips introduce problems because the shape variation can lead to a different result and cannot represent the stiffness of the whole cell. It can lead to a lack of broader meaning when evaluating Young's modulus of yeast cells. In this report, we confirm the differences in results obtained when measuring the compression of a poly(dimethylsiloxane) bead using a commercial sharp tip versus a unique flat tip. The flat tip effectively avoids tip-derived errors, so we use this method to compress whole yeast cells and generate a force­deformation curve. We believe our proposed method is effective for evaluating Young's modulus of whole yeast cells.


Assuntos
Microscopia de Força Atômica , Saccharomyces cerevisiae , Contagem de Células , Módulo de Elasticidade
7.
Sensors (Basel) ; 19(23)2019 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-31795304

RESUMO

This work describes a hydrogel fluorescence microsensor for prolonged stable temperature measurements. Temperature measurement using microsensors has the potential to provide information about cells, tissues, and the culture environment, with optical measurement using a fluorescent dye being a promising microsensing approach. However, it is challenging to achieve stable measurements over prolonged periods with conventional measurement methods based on the fluorescence intensity of fluorescent dye because the excited fluorescent dye molecules are bleached by the exposure to light. The decrease in fluorescence intensity induced by photobleaching causes measurement errors. In this work, a photobleaching compensation method based on the diffusion of fluorescent dye inside a hydrogel microsensor is proposed. The factors that influence compensation in the hydrogel microsensor system are the interval time between measurements, material, concentration of photo initiator, and the composition of the fluorescence microsensor. These factors were evaluated by comparing a polystyrene fluorescence microsensor and a hydrogel fluorescence microsensor, both with diameters of 20 µm. The hydrogel fluorescence microsensor made from 9% poly (ethylene glycol) diacrylate (PEGDA) 575 and 2% photo initiator showed excellent fluorescence intensity stability after exposure (standard deviation of difference from initial fluorescence after 100 measurement repetitions: within 1%). The effect of microsensor size on the stability of the fluorescence intensity was also evaluated. The hydrogel fluorescence microsensors, with sizes greater than the measurement area determined by the axial resolution of the confocal microscope, showed a small decrease in fluorescence intensity, within 3%, after 900 measurement repetitions. The temperature of deionized water in a microchamber was measured for 5400 s using both a thermopile and the hydrogel fluorescence microsensor. The results showed that the maximum error and standard deviation of error between these two sensors were 0.5 °C and 0.3 °C, respectively, confirming the effectiveness of the proposed method.

8.
Sensors (Basel) ; 19(5)2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30836715

RESUMO

The continual development of surgical technology has led to a demand for surgical simulators for evaluating and improving the surgical technique of surgeons. To meet these needs, simulators must incorporate a sensing function into the organ model for evaluating the surgical techniques. However, it is difficult to incorporate a temperature sensor into the conventional cardiac training model. In this study, we propose a heart model for surgical training of cardiac catheter ablation made from hydrogel, which has temperature memory properties. The heart model consists of a photo-crosslinkable hydrogel mixed with an irreversible temperature indicator that exhibits a color change from magenta to colorless at 55 °C. The Young's modulus, electrical resistivity, thermal conductivity, and specific heat capacity of the hydrogel material were evaluated and compared with those of human heart. Furthermore, temperature calibration based on the color of the hydrogel material confirmed that the temperature measurement accuracy of the material is ± 0.18 °C (at 56 °C). A heart model for catheter ablation was fabricated using the hydrogel material and a molding method, and the color change due to temperature change was evaluated.


Assuntos
Coração , Hidrogéis , Ablação por Cateter , Módulo de Elasticidade , Humanos , Temperatura
9.
Opt Lett ; 43(16): 4057-4060, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30106951

RESUMO

Label-free particle analysis is a powerful tool in chemical, pharmaceutical, and cosmetic industries as well as in basic sciences, but its throughput is significantly lower than that of fluorescence-based counterparts. Here we present a label-free single-particle analyzer based on broadband dual-comb coherent Raman scattering spectroscopy operating at a spectroscopic scan rate of 10 kHz. As a proof-of-concept demonstration, we perform broadband coherent anti-Stokes Raman scattering measurements of polystyrene microparticles flowing on an acoustofluidic chip at a high throughput of >1000 particles per second. This high-throughput label-free particle analyzer has the potential for high-precision statistical analysis of a large number of microparticles including biological cells.

10.
Sensors (Basel) ; 18(2)2018 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-29370139

RESUMO

Surgical simulators have recently attracted attention because they enable the evaluation of the surgical skills of medical doctors and the performance of medical devices. However, thermal damage to the human body during surgery is difficult to evaluate using conventional surgical simulators. In this study, we propose a functional surgical model with a temperature-indicating function for the evaluation of thermal damage during surgery. The simulator is made of a composite material of polydimethylsiloxane and a thermochromic dye, which produces an irreversible color change as the temperature increases. Using this material, we fabricated a three-dimensional blood vessel model using the lost-wax process. We succeeded in fabricating a renal vessel model for simulation of catheter ablation. Increases in the temperature of the materials can be measured by image analysis of their color change. The maximum measurement error of the temperature was approximately -1.6 °C/+2.4 °C within the range of 60 °C to 100 °C.


Assuntos
Rim/irrigação sanguínea , Ablação por Cateter , Temperatura Alta/efeitos adversos , Humanos , Modelos Anatômicos
11.
Sensors (Basel) ; 17(5)2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28481293

RESUMO

Monitoring multiple biosignals, such as heart rate, respiration cycle, and weight transitions, contributes to the health management of individuals. Specifically, it is possible to measure multiple biosignals using load information obtained through contact with the environment, such as a chair and bed, in daily use. A wide-range load sensor is essential since load information contains multiple biosignals with various load ranges. In this study, a load sensor is presented by using a quartz crystal resonator (QCR) with a wide measurement range of 1.5 × 106 (0.4 mN to 600 N), and its temperature characteristic of load is improved to -7 Hz/°C (-18 mN/°C). In order to improve the measurement range of the load, a design method of this sensor is proposed by restraining the buckling of QCR and by using a thinner QCR. The proposed sensor allows a higher allowable load with high sensitivity. The load sensor mainly consists of three layers, namely a QCR layer and two holding layers. As opposed to the conventional holding layer composed of silicon, quartz crystal is utilized for the holding layers to improve the temperature characteristic of the load sensor. In the study, multiple biosignals, such as weight and pulse, are detected by using a fabricated sensor.


Assuntos
Quartzo , Temperatura
12.
J Biol Chem ; 290(17): 10627-42, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25673693

RESUMO

The highly pathogenic avian influenza (AI) virus, H5N1, is a serious threat to public health worldwide. Both the currently circulating H5N1 and previously circulating AI viruses recognize avian-type receptors; however, only the H5N1 is highly infectious and virulent in humans. The mechanism(s) underlying this difference in infectivity remains unclear. The aim of this study was to clarify the mechanisms responsible for the difference in infectivity between the current and previously circulating strains. Primary human small airway epithelial cells (SAECs) were transformed with the SV40 large T-antigen to establish a series of clones (SAEC-Ts). These clones were then used to test the infectivity of AI strains. Human SAEC-Ts could be broadly categorized into two different types based on their susceptibility (high or low) to the viruses. SAEC-T clones were poorly susceptible to previously circulating AI but were completely susceptible to the currently circulating H5N1. The hemagglutinin (HA) of the current H5N1 virus showed greater membrane fusion activity at higher pH levels than that of previous AI viruses, resulting in broader cell tropism. Moreover, the endosomal pH was lower in high susceptibility SAEC-T clones than that in low susceptibility SAEC-T clones. Taken together, the results of this study suggest that the infectivity of AI viruses, including H5N1, depends upon a delicate balance between the acid sensitivity of the viral HA and the pH within the endosomes of the target cell. Thus, one of the mechanisms underlying H5N1 pathogenesis in humans relies on its ability to fuse efficiently with the endosomes in human airway epithelial cells.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Virus da Influenza A Subtipo H5N1/fisiologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Mucosa Respiratória/virologia , Animais , Aves , Linhagem Celular , Células Clonais , Cães , Endossomos/metabolismo , Endossomos/virologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Humanos , Concentração de Íons de Hidrogênio , Influenza Aviária/metabolismo , Influenza Aviária/transmissão , Influenza Aviária/virologia , Influenza Humana/metabolismo , Influenza Humana/transmissão , Influenza Humana/virologia , Estabilidade Proteica , Receptores de Superfície Celular/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia , Virulência/fisiologia , Internalização do Vírus
13.
Sensors (Basel) ; 16(12)2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27916931

RESUMO

Manipulation and injection of single nanosensors with high cell viability is an emerging field in cell analysis. We propose a new method using fluorescence nanosensors with a glass nanoprobe and optical control of the zeta potential. The nanosensor is fabricated by encapsulating a fluorescence polystyrene nanobead into a lipid layer with 1,3,3-trimethylindolino-6'-nitrobenzopyrylospiran (SP), which is a photochromic material. The nanobead contains iron oxide nanoparticles and a temperature-sensitive fluorescent dye, Rhodamine B. The zeta potential of the nanosensor switches between negative and positive by photo-isomerization of SP with ultraviolet irradiation. The positively-charged nanosensor easily adheres to a negatively-charged glass nanoprobe, is transported to a target cell, and then adheres to the negatively-charged cell membrane. The nanosensor is then injected into the cytoplasm by heating with a near-infrared (NIR) laser. As a demonstration, a single 750 nm nanosensor was picked-up using a glass nanoprobe with optical control of the zeta potential. Then, the nanosensor was transported and immobilized onto a target cell membrane. Finally, it was injected into the cytoplasm using a NIR laser. The success rates of pick-up and cell immobilization of the nanosensor were 75% and 64%, respectively. Cell injection and cell survival rates were 80% and 100%, respectively.


Assuntos
Técnicas Biossensoriais/métodos , Nanotecnologia/métodos , Citoplasma/metabolismo , Fluorescência , Indóis/química , Nanopartículas/química
14.
J Bacteriol ; 197(4): 676-87, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25313394

RESUMO

Photoautotrophic bacteria have developed mechanisms to maintain K(+) homeostasis under conditions of changing ionic concentrations in the environment. Synechocystis sp. strain PCC 6803 contains genes encoding a well-characterized Ktr-type K(+) uptake transporter (Ktr) and a putative ATP-dependent transporter specific for K(+) (Kdp). The contributions of each of these K(+) transport systems to cellular K(+) homeostasis have not yet been defined conclusively. To verify the functionality of Kdp, kdp genes were expressed in Escherichia coli, where Kdp conferred K(+) uptake, albeit with lower rates than were conferred by Ktr. An on-chip microfluidic device enabled monitoring of the biphasic initial volume recovery of single Synechocystis cells after hyperosmotic shock. Here, Ktr functioned as the primary K(+) uptake system during the first recovery phase, whereas Kdp did not contribute significantly. The expression of the kdp operon in Synechocystis was induced by extracellular K(+) depletion. Correspondingly, Kdp-mediated K(+) uptake supported Synechocystis cell growth with trace amounts of external potassium. This induction of kdp expression depended on two adjacent genes, hik20 and rre19, encoding a putative two-component system. The circadian expression of kdp and ktr peaked at subjective dawn, which may support the acquisition of K(+) required for the regular diurnal photosynthetic metabolism. These results indicate that Kdp contributes to the maintenance of a basal intracellular K(+) concentration under conditions of limited K(+) in natural environments, whereas Ktr mediates fast potassium movements in the presence of greater K(+) availability. Through their distinct activities, both Ktr and Kdp coordinate the responses of Synechocystis to changes in K(+) levels under fluctuating environmental conditions.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Synechocystis/metabolismo , Transporte Biológico , Regulação Bacteriana da Expressão Gênica , Óperon , Potássio/metabolismo , Synechocystis/genética
15.
Biophys J ; 106(11): 2458-64, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24896125

RESUMO

Mammalian cells must produce heat to maintain body temperature and support other biological activities. Methods to measure a cell's thermogenic ability by inserting a thermometer into the cell or measuring the rate of oxygen consumption in a closed vessel can disturb its natural state. Here, we developed a noninvasive system for measuring a cell's heat production with a bimaterial microcantilever. This method is suitable for investigating the heat-generating properties of cells in their native state, because changes in cell temperature can be measured from the bending of the microcantilever, without damaging the cell and restricting its supply of dissolved oxygen. Thus, we were able to measure increases in cell temperature of <1 K in a small number of murine brown adipocytes (n = 4-7 cells) stimulated with norepinephrine, and observed a slow increase in temperature over several hours. This long-term heat production suggests that, in addition to converting fatty acids into heat energy, brown adipocytes may also adjust protein expression to raise their own temperature, to generate more heat. We expect this bimaterial microcantilever system to prove useful for determining a cell's state by measuring thermal characteristics.


Assuntos
Adipócitos Marrons/metabolismo , Técnicas Biossensoriais/métodos , Análise de Célula Única/métodos , Temperatura , Termometria/métodos , Animais , Células Cultivadas , Metabolismo Energético , Ouro/química , Masculino , Camundongos , Camundongos Endogâmicos ICR , Compostos de Silício/química , Análise de Célula Única/instrumentação , Termômetros , Termometria/instrumentação
16.
Sens Actuators B Chem ; 201: 185-190, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32288247

RESUMO

The spread of infectious diseases has become a global health concern. In order to diagnose infectious diseases quickly and accurately, next-generation DNA sequencing techniques for genetic analysis of infectious viruses have been developed rapidly. However, it takes a very long time to pretreat clinical samples for genetic analysis using next-generation sequencers. We have therefore developed a microfluidic chromatography chip that can purify and enrich viruses in a sample using hydroxyapatite particles packed in a micro-column. We demonstrated the purification of virus from a mixture of virus and FBS protein, and enrichment of the virus using this novel microfluidic chip.

17.
Biofabrication ; 16(2)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38447227

RESUMO

Engineered muscle fibers are attracting interest in bio-actuator research as they can contribute to the fabrication of actuators with a high power/size ratio for micro-robots. These fibers require to be stretched during culture for functional regulation as actuators and require a fixation on a rigid substrate for stretching in culture and evaluation of mechanical properties, such as Young's modulus and contraction force. However, the conventional fixation methods for muscle fibers have many restrictions as they are not repeatable and the connection between fixation part and the muscle fibers detaches during culture; therefore, the fixation becomes weak during culture, and direct measurement of the muscle fibers' mechanical properties by a force sensor is difficult. Therefore, we propose a facile and repeatable fixation method for muscle fibers by mixing magnetite nanoparticles at both ends of the muscle fibers to fabricate magnetic ends. The fiber can be easily attached and detached repeatedly by manipulating a magnet that applies a magnetic force larger than 3 mN to the magnetic ends. Thus, the muscle fiber can be stretched fiber during culture for functional regulation, transported between the culture dish and measurement system, and directly connected to the force sensor for measurement with magnetic ends. The muscle fiber connected with magnetic ends have a long lifetime (∼4 weeks) and the cells inside had the morphology of a skeletal muscle. Moreover, the muscle fiber showed a contraction (specific force of 1.02 mN mm-2) synchronized with electrical stimulation, confirming the muscle fiber fabricated and cultured using our method had similar morphology and function as bio-actuators in previous research. This research demonstrates the advantages of the fixation method using muscle fibers with magnetic ends; the fibers are stretched during culture, and the transportation and force measurement of weak and tiny muscle fibers could be finished in 1 min.


Assuntos
Contração Muscular , Fibras Musculares Esqueléticas , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Fenômenos Mecânicos , Fenômenos Magnéticos
18.
Lab Chip ; 24(2): 281-291, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38086698

RESUMO

The osmotic stress imposed on microorganisms by hypotonic conditions is perceived to regulate water and solute flux via cell membranes, which are crucial for survival. Some cells that fail to perceive osmotic stress die because this results in the rupture of the cell membrane. The flux through the membrane is characterized by the membrane permeability, which is measured using a stopped-flow apparatus in response to a millisecond-order osmolarity change. However, the obtained data are an ensemble average of each cell response. Additionally, the measurement of permeability, considering cellular viability, contributes to a more accurate evaluation of osmoadaptation. Here, we present a novel on-chip instantaneous extracellular solution exchange method using an air-liquid interface. The presented method provides a concurrent evaluation at the single-cell level in response to a millisecond-order osmotic shock, considering cellular viability by solution exchange. This method utilizes a liquid bridge with a locally formed droplet on the surface of a micropillar fabricated inside a microchannel. We evaluated a solution exchange time of 3.6 ms and applied this method to Synechocystis PCC 6803 under two different osmolarity conditions. The live/dead ratio of 1 M to 0.5 M osmotic down shock condition was 78.8/21.2% while that of 1 M to 0.25 M osmotic down shock condition was 40.0/60.0%. We evaluated the water permeability of two groups: cells that were still live before and after osmotic shock (hereafter named cell type 1), and cells that were live before but were dead 10 minutes after osmotic shock (hereafter named cell type 2). The results indicated that the water permeability of cell type 2 was higher than that of cell type 1. The results obtained using the presented methods confirmed that the effect of osmotic stress can be accurately evaluated using single-cell analysis.


Assuntos
Água , Permeabilidade da Membrana Celular , Pressão Osmótica , Membrana Celular/metabolismo , Permeabilidade , Osmose , Água/metabolismo
19.
Micromachines (Basel) ; 14(4)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37421018

RESUMO

This paper reports a new concept of a film-shaped micropump array for biomedical perfusion. The detailed concept, design, fabrication process, and performance evaluation using prototypes are described. In this micropump array, an open circuit potential (OCP) is generated by a planar biofuel cell (BFC), which in turn generates electro-osmotic flows (EOFs) in multiple through-holes arranged perpendicular to the micropump plane. The micropump array is thin and wireless, so it can be cut like postage stamps, easily installed in any small location, and can act as a planar micropump in solutions containing the biofuels glucose and oxygen. Perfusion at local sites are difficult with conventional techniques using multiple separate components such as micropumps and energy sources. This micropump array is expected to be applied to the perfusion of biological fluids in small locations near or inside cultured cells, cultured tissues, living organisms, and so on.

20.
Micromachines (Basel) ; 14(6)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37374795

RESUMO

The integration of liquid exchange and microfluidic chips plays a critical role in the biomedical and biophysical fields as it enables the control of the extracellular environment and allows for the simultaneous stimulation and detection of single cells. In this study, we present a novel approach for measuring the transient response of single cells using a system integrated with a microfluidic chip and a probe with a dual pump. The system was composed of a probe with a dual pump system, a microfluidic chip, optical tweezers, an external manipulator, an external piezo actuator, etc. Particularly, we incorporated the probe with the dual pump to allow for high-speed liquid change, and the localized flow control enabled a low disturbance contact force detection of single cells on the chip. Using this system, we measured the transient response of the cell swelling against the osmotic shock with a very fine time resolution. To demonstrate the concept, we first designed the double-barreled pipette, which was assembled with two piezo pumps to achieve a probe with the dual pump system, allowing for simultaneous liquid injection and suction. The microfluidic chip with on-chip probes was fabricated, and the integrated force sensor was calibrated. Second, we characterized the performance of the probe with the dual pump system, and the effect of the analysis position and area of the liquid exchange time was investigated. In addition, we optimized the applied injection voltage to achieve a complete concentration change, and the average liquid exchange time was achieved at approximately 3.33 ms. Finally, we demonstrated that the force sensor was only subjected to minor disturbances during the liquid exchange. This system was utilized to measure the deformation and the reactive force of Synechocystis sp. strain PCC 6803 in osmotic shock, with an average response time of approximately 16.33 ms. This system reveals the transient response of compressed single cells under millisecond osmotic shock which has the potential to characterize the accurate physiological function of ion channels.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa