Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Magn Reson Med ; 83(6): 2197-2208, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31762110

RESUMO

PURPOSE: Oscillating gradient spin-echo (OGSE) diffusion MRI provides information about the microstructure of biological tissues by means of the frequency dependence of the apparent diffusion coefficient (ADC). ADC dependence on OGSE frequency has been explored in numerous rodent studies, but applications in the human brain have been limited and have suffered from low contrast between different frequencies, long scan times, and a limited exploration of the nature of the ADC dependence on frequency. THEORY AND METHODS: Multiple frequency OGSE acquisitions were acquired in healthy subjects at 7T to explore the power-law frequency dependence of ADC, the "diffusion dispersion." Furthermore, a method for optimizing the estimation of the ADC difference between different OGSE frequencies was developed, which enabled the design of a highly efficient protocol for mapping diffusion dispersion. RESULTS: For the first time, evidence of a linear dependence of ADC on the square root of frequency in healthy human white matter was obtained. Using the optimized protocol, high-quality, full-brain maps of apparent diffusion dispersion rate were also demonstrated at an isotropic resolution of 2 mm in a scan time of 6 min. CONCLUSIONS: This work sheds light on the nature of diffusion dispersion in the healthy human brain and introduces full-brain diffusion dispersion mapping at clinically relevant scan times. These advances may lead to new biomarkers of pathology or improved microstructural modeling.


Assuntos
Encéfalo , Imagem de Difusão por Ressonância Magnética , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Difusão , Humanos , Imageamento por Ressonância Magnética
2.
Sci Rep ; 14(1): 9949, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688948

RESUMO

Measurements of frequency offset are commonly required in MRI. The standard method measures the signal phase as a function of evolution time. Here we use a single shot turbo-spin-echo acquisition method to measure frequency offset at a single evolution time. After excitation the transverse magnetisation evolves during the evolution time, and is then repeatedly refocused. The phase is conjugated between alternate echoes. Using partial parallel acquisition techniques we obtain separate odd- and even- echo images. An iterative procedure ensures self-consistency between them. The difference in phase between the two images yields frequency offset maps. The technique was implemented at 3 Tesla and tested on a healthy human volunteer for a range of evolution times between 6 and 42 ms. A standard method using a similar readout train and multiple evolution times was used as a gold-standard measure. In a statistical comparison with the gold standard no evidence for bias or offset was found. There was no systematic variation in precision or accuracy as a function of evolution time. We conclude that the presented approach represents a viable method for the rapid generation of frequency offset maps with a high image quality and minimal distortion.

3.
J Magn Reson ; 266: 8-15, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26999032

RESUMO

Sprays are dynamic collections of droplets dispersed in a gas, with many industrial and agricultural applications. Quantitative characterization is essential for understanding processes of spray formation and dynamics. There exists a wide range of measurement techniques to characterize sprays, from direct imaging to phase Doppler interferometry to X-rays, which provide detailed information on spray characteristics in the "far-nozzle" region (≫10 diameters of the nozzle). However, traditional methods are limited in their ability to characterize the "near-nozzle" region where the fluid may be inside the nozzle, optically dense, or incompletely atomized. Magnetic Resonance Imaging (MRI) presents potential as a non-invasive technique that is capable of measuring optically inaccessible fluid in a quantitative fashion. In this work, MRI measurements of the spray generated by ceramic flat-fan nozzles were performed. A wide range of flow speeds in the system (0.2 to >25m/s) necessitated short encoding times. A 3D Conical SPRITE and motion-sensitized 3D Conical SPRITE were employed. The signal from water inside the nozzle was well-characterized, both via proton density and velocity measurements. The signal outside the nozzle, in the near-nozzle region, was detectable, corresponding to the expected flat-fan spray pattern up to 3mm away. The results demonstrate the potential of MRI for measuring spray characteristics in areas inaccessible by other methods.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa