Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 22(4): e3002581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38593123

RESUMO

Symbiosis is an old idea with a contentious history. New genomic technologies and research paradigms are fueling a shift in some of its central tenets; we need to be humble and open-minded about what the data are telling us.


Assuntos
Genômica , Simbiose , Simbiose/genética
2.
Proc Natl Acad Sci U S A ; 120(49): e2306381120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38019867

RESUMO

Inteins are self-splicing protein elements found in viruses and all three domains of life. How the DNA encoding these selfish elements spreads within and between genomes is poorly understood, particularly in eukaryotes where inteins are scarce. Here, we show that the nuclear genomes of three strains of Anaeramoeba encode between 45 and 103 inteins, in stark contrast to four found in the most intein-rich eukaryotic genome described previously. The Anaeramoeba inteins reside in a wide range of proteins, only some of which correspond to intein-containing proteins in other eukaryotes, prokaryotes, and viruses. Our data also suggest that viruses have contributed to the spread of inteins in Anaeramoeba and the colonization of new alleles. The persistence of Anaeramoeba inteins might be partly explained by intragenomic movement of intein-encoding regions from gene to gene. Our intein dataset greatly expands the spectrum of intein-containing proteins and provides insights into the evolution of inteins in eukaryotes.


Assuntos
Inteínas , Processamento de Proteína , Inteínas/genética , Eucariotos/genética , Proteínas/genética , Genoma
3.
Genome Res ; 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109147

RESUMO

The unicellular amoeba Acanthamoeba castellanii is ubiquitous in aquatic environments, where it preys on bacteria. The organism also hosts bacterial endosymbionts, some of which are parasitic, including human pathogens such as Chlamydia and Legionella spp. Here we report complete, high-quality genome sequences for two extensively studied A. castellanii strains, Neff and C3. Combining long- and short-read data with Hi-C, we generated near chromosome-level assemblies for both strains with 90% of the genome contained in 29 scaffolds for the Neff strain and 31 for the C3 strain. Comparative genomics revealed strain-specific functional enrichment, most notably genes related to signal transduction in the C3 strain and to viral replication in Neff. Furthermore, we characterized the spatial organization of the A. castellanii genome and showed that it is reorganized during infection by Legionella pneumophila Infection-dependent chromatin loops were found to be enriched in genes for signal transduction and phosphorylation processes. In genomic regions where chromatin organization changed during Legionella infection, we found functional enrichment for genes associated with metabolism, organelle assembly, and cytoskeleton organization. Given Legionella infection is known to alter its host's cell cycle, to exploit the host's organelles, and to modulate the host's metabolism in its favor, these changes in chromatin organization may partly be related to mechanisms of host control during Legionella infection.

4.
J Virol ; 98(5): e0190123, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38629840

RESUMO

Many viruses inhibit general host gene expression to limit innate immune responses and gain preferential access to the cellular translational apparatus for their protein synthesis. This process is known as host shutoff. Influenza A viruses (IAVs) encode two host shutoff proteins: nonstructural protein 1 (NS1) and polymerase acidic X (PA-X). NS1 inhibits host nuclear pre-messenger RNA maturation and export, and PA-X is an endoribonuclease that preferentially cleaves host spliced nuclear and cytoplasmic messenger RNAs. Emerging evidence suggests that in circulating human IAVs NS1 and PA-X co-evolve to ensure optimal magnitude of general host shutoff without compromising viral replication that relies on host cell metabolism. However, the functional interplay between PA-X and NS1 remains unexplored. In this study, we sought to determine whether NS1 function has a direct effect on PA-X activity by analyzing host shutoff in A549 cells infected with wild-type or mutant IAVs with NS1 effector domain deletion. This was done using conventional quantitative reverse transcription polymerase chain reaction techniques and direct RNA sequencing using nanopore technology. Our previous research on the molecular mechanisms of PA-X function identified two prominent features of IAV-infected cells: nuclear accumulation of cytoplasmic poly(A) binding protein (PABPC1) and increase in nuclear poly(A) RNA abundance relative to the cytoplasm. Here we demonstrate that NS1 effector domain function augments PA-X host shutoff and is necessary for nuclear PABPC1 accumulation. By contrast, nuclear poly(A) RNA accumulation is not dependent on either NS1 or PA-X-mediated host shutoff and is accompanied by nuclear retention of viral transcripts. Our study demonstrates for the first time that NS1 and PA-X may functionally interact in mediating host shutoff.IMPORTANCERespiratory viruses including the influenza A virus continue to cause annual epidemics with high morbidity and mortality due to the limited effectiveness of vaccines and antiviral drugs. Among the strategies evolved by viruses to evade immune responses is host shutoff-a general blockade of host messenger RNA and protein synthesis. Disabling influenza A virus host shutoff is being explored in live attenuated vaccine development as an attractive strategy for increasing their effectiveness by boosting antiviral responses. Influenza A virus encodes two proteins that function in host shutoff: the nonstructural protein 1 (NS1) and the polymerase acidic X (PA-X). We and others have characterized some of the NS1 and PA-X mechanisms of action and the additive effects that these viral proteins may have in ensuring the blockade of host gene expression. In this work, we examined whether NS1 and PA-X functionally interact and discovered that NS1 is required for PA-X to function effectively. This work significantly advances our understanding of influenza A virus host shutoff and identifies new potential targets for therapeutic interventions against influenza and further informs the development of improved live attenuated vaccines.


Assuntos
Vírus da Influenza A , Proteínas não Estruturais Virais , Humanos , Células A549 , Interações Hospedeiro-Patógeno , Vírus da Influenza A/genética , Influenza Humana/virologia , Influenza Humana/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral , Interações Hospedeiro-Parasita
5.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042801

RESUMO

Life on Earth has evolved from initial simplicity to the astounding complexity we experience today. Bacteria and archaea have largely excelled in metabolic diversification, but eukaryotes additionally display abundant morphological innovation. How have these innovations come about and what constraints are there on the origins of novelty and the continuing maintenance of biodiversity on Earth? The history of life and the code for the working parts of cells and systems are written in the genome. The Earth BioGenome Project has proposed that the genomes of all extant, named eukaryotes-about 2 million species-should be sequenced to high quality to produce a digital library of life on Earth, beginning with strategic phylogenetic, ecological, and high-impact priorities. Here we discuss why we should sequence all eukaryotic species, not just a representative few scattered across the many branches of the tree of life. We suggest that many questions of evolutionary and ecological significance will only be addressable when whole-genome data representing divergences at all of the branchings in the tree of life or all species in natural ecosystems are available. We envisage that a genomic tree of life will foster understanding of the ongoing processes of speciation, adaptation, and organismal dependencies within entire ecosystems. These explorations will resolve long-standing problems in phylogenetics, evolution, ecology, conservation, agriculture, bioindustry, and medicine.


Assuntos
Sequência de Bases/genética , Eucariotos/genética , Genômica/ética , Animais , Biodiversidade , Evolução Biológica , Ecologia , Ecossistema , Genoma , Genômica/métodos , Humanos , Filogenia
6.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35042802

RESUMO

A global international initiative, such as the Earth BioGenome Project (EBP), requires both agreement and coordination on standards to ensure that the collective effort generates rapid progress toward its goals. To this end, the EBP initiated five technical standards committees comprising volunteer members from the global genomics scientific community: Sample Collection and Processing, Sequencing and Assembly, Annotation, Analysis, and IT and Informatics. The current versions of the resulting standards documents are available on the EBP website, with the recognition that opportunities, technologies, and challenges may improve or change in the future, requiring flexibility for the EBP to meet its goals. Here, we describe some highlights from the proposed standards, and areas where additional challenges will need to be met.


Assuntos
Sequência de Bases/genética , Eucariotos/genética , Genômica/normas , Animais , Biodiversidade , Genômica/métodos , Humanos , Padrões de Referência , Valores de Referência , Análise de Sequência de DNA/métodos , Análise de Sequência de DNA/normas
7.
BMC Biol ; 20(1): 227, 2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209116

RESUMO

BACKGROUND: Cryptophytes are ecologically important algae of interest to evolutionary cell biologists because of the convoluted history of their plastids and nucleomorphs, which are derived from red algal secondary endosymbionts. To better understand the evolution of the cryptophyte nucleomorph, we sequenced nucleomorph genomes from two photosynthetic and two non-photosynthetic species in the genus Cryptomonas. We performed a comparative analysis of these four genomes and the previously published genome of the non-photosynthetic species Cryptomonas paramecium CCAP977/2a. RESULTS: All five nucleomorph genomes are similar in terms of their general architecture, gene content, and gene order and, in the non-photosynthetic strains, loss of photosynthesis-related genes. Interestingly, in terms of size and coding capacity, the nucleomorph genome of the non-photosynthetic species Cryptomonas sp. CCAC1634B is much more similar to that of the photosynthetic C. curvata species than to the non-photosynthetic species C. paramecium. CONCLUSIONS: Our results reveal fine-scale nucleomorph genome variation between distantly related congeneric taxa containing photosynthetic and non-photosynthetic species, including recent pseudogene formation, and provide a first glimpse into the possible impacts of the loss of photosynthesis on nucleomorph genome coding capacity and structure in independently evolved colorless strains.


Assuntos
Criptófitas , Genoma , Criptófitas/genética , Genômica , Fotossíntese , Filogenia , Plastídeos/genética
8.
Plant J ; 103(3): 1025-1048, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32333477

RESUMO

All land plants (embryophytes) share a common ancestor that likely evolved from a filamentous freshwater alga. Elucidating the transition from algae to embryophytes - and the eventual conquering of Earth's surface - is one of the most fundamental questions in plant evolutionary biology. Here, we investigated one of the organismal properties that might have enabled this transition: resistance to drastic temperature shifts. We explored the effect of heat stress in Mougeotia and Spirogyra, two representatives of Zygnematophyceae - the closest known algal sister lineage to land plants. Heat stress induced pronounced phenotypic alterations in their plastids, and high-performance liquid chromatography-tandem mass spectroscopy-based profiling of 565 transitions for the analysis of main central metabolites revealed significant shifts in 43 compounds. We also analyzed the global differential gene expression responses triggered by heat, generating 92.8 Gbp of sequence data and assembling a combined set of 8905 well-expressed genes. Each organism had its own distinct gene expression profile; less than one-half of their shared genes showed concordant gene expression trends. We nevertheless detected common signature responses to heat such as elevated transcript levels for molecular chaperones, thylakoid components, and - corroborating our metabolomic data - amino acid metabolism. We also uncovered the heat-stress responsiveness of genes for phosphorelay-based signal transduction that links environmental cues, calcium signatures and plastid biology. Our data allow us to infer the molecular heat stress response that the earliest land plants might have used when facing the rapidly shifting temperature conditions of the terrestrial habitat.


Assuntos
Mougeotia/fisiologia , Spirogyra/fisiologia , Aminoácidos/metabolismo , Evolução Biológica , Cromatografia Líquida de Alta Pressão , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Resposta ao Choque Térmico , Metabolômica , Mougeotia/genética , Mougeotia/metabolismo , Plastídeos , Spirogyra/genética , Spirogyra/metabolismo , Espectrometria de Massas em Tandem , Transcriptoma
9.
BMC Genomics ; 22(1): 379, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34030633

RESUMO

BACKGROUND: The marine diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum are valuable model organisms for exploring the evolution, diversity and ecology of this important algal group. Their reference genomes, published in 2004 and 2008, respectively, were the product of traditional Sanger sequencing. In the case of T. pseudonana, optical restriction site mapping was employed to further clarify and contextualize chromosome-level scaffolds. While both genomes are considered highly accurate and reasonably contiguous, they still contain many unresolved regions and unordered/unlinked scaffolds. RESULTS: We have used Oxford Nanopore Technologies long-read sequencing to update and validate the quality and contiguity of the T. pseudonana and P. tricornutum genomes. Fine-scale assessment of our long-read derived genome assemblies allowed us to resolve previously uncertain genomic regions, further characterize complex structural variation, and re-evaluate the repetitive DNA content of both genomes. We also identified 1862 previously undescribed genes in T. pseudonana. In P. tricornutum, we used transposable element detection software to identify 33 novel copia-type LTR-RT insertions, indicating ongoing activity and rapid expansion of this superfamily as the organism continues to be maintained in culture. Finally, Bionano optical mapping of P. tricornutum chromosomes was combined with long-read sequence data to explore the potential of long-read sequencing and optical mapping for resolving haplotypes. CONCLUSION: Despite its potential to yield highly contiguous scaffolds, long-read sequencing is not a panacea. Even for relatively small nuclear genomes such as those investigated herein, repetitive DNA sequences cause problems for current genome assembly algorithms. Determining whether a long-read derived genomic assembly is 'better' than one produced using traditional sequence data is not straightforward. Our revised reference genomes for P. tricornutum and T. pseudonana nevertheless provide additional insight into the structure and evolution of both genomes, thereby providing a more robust foundation for future diatom research.


Assuntos
Diatomáceas , Elementos de DNA Transponíveis , Diatomáceas/genética , Genômica , Haplótipos , Software
10.
BMC Plant Biol ; 21(1): 375, 2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34388962

RESUMO

BACKGROUND: The lace plant (Aponogeton madagascariensis) is an aquatic monocot that develops leaves with uniquely formed perforations through the use of a developmentally regulated process called programmed cell death (PCD). The process of perforation formation in lace plant leaves is subdivided into several developmental stages: pre-perforation, window, perforation formation, perforation expansion and mature. The first three emerging "imperforate leaves" do not form perforations, while all subsequent leaves form perforations via developmentally regulated PCD. PCD is active in cells called "PCD cells" that do not retain the antioxidant anthocyanin in spaces called areoles framed by the leaf veins of window stage leaves. Cells near the veins called "NPCD cells" retain a red pigmentation from anthocyanin and do not undergo PCD. While the cellular changes that occur during PCD are well studied, the gene expression patterns underlying these changes and driving PCD during leaf morphogenesis are mostly unknown. We sought to characterize differentially expressed genes (DEGs) that mediate lace plant leaf remodelling and PCD. This was achieved performing gene expression analysis using transcriptomics and comparing DEGs among different stages of leaf development, and between NPCD and PCD cells isolated by laser capture microdissection. RESULTS: Transcriptomes were sequenced from imperforate, pre-perforation, window, and mature leaf stages, as well as PCD and NPCD cells isolated from window stage leaves. Differential expression analysis of the data revealed distinct gene expression profiles: pre-perforation and window stage leaves were characterized by higher expression of genes involved in anthocyanin biosynthesis, plant proteases, expansins, and autophagy-related genes. Mature and imperforate leaves upregulated genes associated with chlorophyll development, photosynthesis, and negative regulators of PCD. PCD cells were found to have a higher expression of genes involved with ethylene biosynthesis, brassinosteroid biosynthesis, and hydrolase activity whereas NPCD cells possessed higher expression of auxin transport, auxin signalling, aspartyl proteases, cysteine protease, Bag5, and anthocyanin biosynthesis enzymes. CONCLUSIONS: RNA sequencing was used to generate a de novo transcriptome for A. madagascariensis leaves and revealed numerous DEGs potentially involved in PCD and leaf remodelling. The data generated from this investigation will be useful for future experiments on lace plant leaf development and PCD in planta.


Assuntos
Alismatales/genética , Alismatales/fisiologia , Apoptose , Folhas de Planta/fisiologia , Alismatales/crescimento & desenvolvimento , Antocianinas/biossíntese , Apoptose/genética , Parede Celular/enzimologia , Regulação da Expressão Gênica de Plantas , Células Vegetais , Reguladores de Crescimento de Plantas/fisiologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , RNA de Plantas , RNA-Seq , Fatores de Transcrição/fisiologia , Transcriptoma
11.
Proc Natl Acad Sci U S A ; 115(15): E3471-E3480, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29581286

RESUMO

Streptophytes are unique among photosynthetic eukaryotes in having conquered land. As the ancestors of land plants, streptophyte algae are hypothesized to have possessed exaptations to the environmental stressors encountered during the transition to terrestrial life. Many of these stressors, including high irradiance and drought, are linked to plastid biology. We have investigated global gene expression patterns across all six major streptophyte algal lineages, analyzing a total of around 46,000 genes assembled from a little more than 1.64 billion sequence reads from six organisms under three growth conditions. Our results show that streptophyte algae respond to cold and high light stress via expression of hallmark genes used by land plants (embryophytes) during stress-response signaling and downstream responses. Among the strongest differentially regulated genes were those associated with plastid biology. We observed that among streptophyte algae, those most closely related to land plants, especially Zygnema, invest the largest fraction of their transcriptional budget in plastid-targeted proteins and possess an array of land plant-type plastid-nucleus communication genes. Streptophyte algae more closely related to land plants also appear most similar to land plants in their capacity to respond to plastid stressors. Support for this notion comes from the detection of a canonical abscisic acid receptor of the PYRABACTIN RESISTANCE (PYR/PYL/RCAR) family in Zygnema, the first found outside the land plant lineage. We conclude that a fine-tuned response toward terrestrial plastid stressors was among the exaptations that allowed streptophytes to colonize the terrestrial habitat on a global scale.


Assuntos
Estreptófitas/metabolismo , Estresse Fisiológico/fisiologia , Evolução Biológica , Fenômenos Biológicos , Comunicação Celular/fisiologia , Núcleo Celular/metabolismo , Carofíceas/metabolismo , Clorófitas/metabolismo , Embriófitas/metabolismo , Evolução Molecular , Filogenia , Plantas/metabolismo , Plastídeos/metabolismo , Plastídeos/fisiologia , Estreptófitas/fisiologia
12.
PLoS Biol ; 15(9): e2003769, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28892507

RESUMO

Blastocystis is the most prevalent eukaryotic microbe colonizing the human gut, infecting approximately 1 billion individuals worldwide. Although Blastocystis has been linked to intestinal disorders, its pathogenicity remains controversial because most carriers are asymptomatic. Here, the genome sequence of Blastocystis subtype (ST) 1 is presented and compared to previously published sequences for ST4 and ST7. Despite a conserved core of genes, there is unexpected diversity between these STs in terms of their genome sizes, guanine-cytosine (GC) content, intron numbers, and gene content. ST1 has 6,544 protein-coding genes, which is several hundred more than reported for ST4 and ST7. The percentage of proteins unique to each ST ranges from 6.2% to 20.5%, greatly exceeding the differences observed within parasite genera. Orthologous proteins also display extreme divergence in amino acid sequence identity between STs (i.e., 59%-61% median identity), on par with observations of the most distantly related species pairs of parasite genera. The STs also display substantial variation in gene family distributions and sizes, especially for protein kinase and protease gene families, which could reflect differences in virulence. It remains to be seen to what extent these inter-ST differences persist at the intra-ST level. A full 26% of genes in ST1 have stop codons that are created on the mRNA level by a novel polyadenylation mechanism found only in Blastocystis. Reconstructions of pathways and organellar systems revealed that ST1 has a relatively complete membrane-trafficking system and a near-complete meiotic toolkit, possibly indicating a sexual cycle. Unlike some intestinal protistan parasites, Blastocystis ST1 has near-complete de novo pyrimidine, purine, and thiamine biosynthesis pathways and is unique amongst studied stramenopiles in being able to metabolize α-glucans rather than ß-glucans. It lacks all genes encoding heme-containing cytochrome P450 proteins. Predictions of the mitochondrion-related organelle (MRO) proteome reveal an expanded repertoire of functions, including lipid, cofactor, and vitamin biosynthesis, as well as proteins that may be involved in regulating mitochondrial morphology and MRO/endoplasmic reticulum (ER) interactions. In sharp contrast, genes for peroxisome-associated functions are absent, suggesting Blastocystis STs lack this organelle. Overall, this study provides an important window into the biology of Blastocystis, showcasing significant differences between STs that can guide future experimental investigations into differences in their virulence and clarifying the roles of these organisms in gut health and disease.


Assuntos
Blastocystis/genética , Genoma de Protozoário , Blastocystis/metabolismo , Metabolismo dos Carboidratos , Códon de Terminação , Microbioma Gastrointestinal , Humanos , Íntrons , Especificidade da Espécie
14.
BMC Evol Biol ; 19(1): 20, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30634905

RESUMO

BACKGROUND: The Synurophyceae is one of most important photosynthetic stramenopile algal lineages in freshwater ecosystems. They are characterized by siliceous scales covering the cell or colony surface and possess plastids of red-algal secondary or tertiary endosymbiotic origin. Despite their ecological and evolutionary significance, the relationships amongst extant Synurophyceae are unclear, as is their relationship to most other stramenopiles. RESULTS: Here we report a comparative analysis of plastid genomes sequenced from five representative synurophycean algae. Most of these plastid genomes are highly conserved with respect to genome structure and coding capacity, with the exception of gene re-arrangements and partial duplications at the boundary of the inverted repeat and single-copy regions. Several lineage-specific gene loss/gain events and intron insertions were detected (e.g., cemA, dnaB, syfB, and trnL). CONCLUSIONS: Unexpectedly, the cemA gene of Synurophyceae shows a strong relationship with sequences from members of the green-algal lineage, suggesting the occurrence of a lateral gene transfer event. Using a molecular clock approach based on silica fossil record data, we infer the timing of genome re-arrangement and gene gain/loss events in the plastid genomes of Synurophyceae.


Assuntos
Variação Genética , Genomas de Plastídeos , Genômica , Sequências Repetidas Invertidas/genética , Estramenópilas/genética , Sequência de Bases , DNA Circular/genética , Evolução Molecular , Dosagem de Genes , Conformação de Ácido Nucleico , Filogenia , RNA de Transferência/química , RNA de Transferência/genética
15.
BMC Genomics ; 20(1): 38, 2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30642248

RESUMO

BACKGROUND: The process of gene fusion involves the formation of a single chimeric gene from multiple complete or partial gene sequences. Gene fusion is recognized as an important mechanism by which genes and their protein products can evolve new functions. The presence-absence of gene fusions can also be useful characters for inferring evolutionary relationships between organisms. RESULTS: Here we show that the nuclear genomes of two unrelated single-celled algae, the cryptophyte Guillardia theta and the chlorarachniophyte Bigelowiella natans, possess an unexpected diversity of genes for ubiquitin fusion proteins, including novel arrangements in which ubiquitin occupies amino-terminal, carboxyl-terminal, and internal positions relative to its fusion partners. We explore the evolution of the ubiquitin multigene family in both genomes, and show that both algae possess a gene encoding an ubiquitin-nickel superoxide dismutase fusion protein (Ubiq-NiSOD) that is widely but patchily distributed across the eukaryotic tree of life - almost exclusively in phototrophs. CONCLUSION: Our results suggest that ubiquitin fusion proteins are more common than currently appreciated; because of its small size, the ubiquitin coding region can go undetected when gene predictions are carried out in an automated fashion. The punctate distribution of the Ubiq-NiSOD fusion across the eukaryotic tree could serve as a beacon for the spread of plastids from eukaryote to eukaryote by secondary and/or tertiary endosymbiosis.


Assuntos
Cercozoários/genética , Criptófitas/genética , Fusão Gênica , Proteínas Mutantes Quiméricas/genética , Ubiquitinas/classificação , Ubiquitinas/genética , Evolução Molecular , Filogenia , Simbiose
16.
BMC Biol ; 16(1): 137, 2018 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-30482201

RESUMO

BACKGROUND: The evolution of photosynthesis has been a major driver in eukaryotic diversification. Eukaryotes have acquired plastids (chloroplasts) either directly via the engulfment and integration of a photosynthetic cyanobacterium (primary endosymbiosis) or indirectly by engulfing a photosynthetic eukaryote (secondary or tertiary endosymbiosis). The timing and frequency of secondary endosymbiosis during eukaryotic evolution is currently unclear but may be resolved in part by studying cryptomonads, a group of single-celled eukaryotes comprised of both photosynthetic and non-photosynthetic species. While cryptomonads such as Guillardia theta harbor a red algal-derived plastid of secondary endosymbiotic origin, members of the sister group Goniomonadea lack plastids. Here, we present the genome of Goniomonas avonlea-the first for any goniomonad-to address whether Goniomonadea are ancestrally non-photosynthetic or whether they lost a plastid secondarily. RESULTS: We sequenced the nuclear and mitochondrial genomes of Goniomonas avonlea and carried out a comparative analysis of Go. avonlea, Gu. theta, and other cryptomonads. The Go. avonlea genome assembly is ~ 92 Mbp in size, with 33,470 predicted protein-coding genes. Interestingly, some metabolic pathways (e.g., fatty acid biosynthesis) predicted to occur in the plastid and periplastidal compartment of Gu. theta appear to operate in the cytoplasm of Go. avonlea, suggesting that metabolic redundancies were generated during the course of secondary plastid integration. Other cytosolic pathways found in Go. avonlea are not found in Gu. theta, suggesting secondary loss in Gu. theta and other plastid-bearing cryptomonads. Phylogenetic analyses revealed no evidence for algal endosymbiont-derived genes in the Go. avonlea genome. Phylogenomic analyses point to a specific relationship between Cryptista (to which cryptomonads belong) and Archaeplastida. CONCLUSION: We found no convincing genomic or phylogenomic evidence that Go. avonlea evolved from a secondary red algal plastid-bearing ancestor, consistent with goniomonads being ancestrally non-photosynthetic eukaryotes. The Go. avonlea genome sheds light on the physiology of heterotrophic cryptomonads and serves as an important reference point for studying the metabolic "rewiring" that took place during secondary plastid integration in the ancestor of modern-day Cryptophyceae.


Assuntos
Criptófitas/genética , Evolução Molecular , Genoma , Plastídeos/genética , Proteínas de Algas/análise , Núcleo Celular/genética , Criptófitas/citologia , Filogenia , Triptofano-tRNA Ligase/análise
17.
BMC Genomics ; 19(1): 275, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-29678149

RESUMO

BACKGROUND: Cryptophytes are an ecologically important group of algae comprised of phototrophic, heterotrophic and osmotrophic species. This lineage is of great interest to evolutionary biologists because their plastids are of red algal secondary endosymbiotic origin. Cryptophytes have a clear phylogenetic affinity to heterotrophic eukaryotes and possess four genomes: host-derived nuclear and mitochondrial genomes, and plastid and nucleomorph genomes of endosymbiotic origin. RESULTS: To gain insight into cryptophyte mitochondrial genome evolution, we sequenced the mitochondrial DNAs of five species and performed a comparative analysis of seven genomes from the following cryptophyte genera: Chroomonas, Cryptomonas, Hemiselmis, Proteomonas, Rhodomonas, Storeatula and Teleaulax. The mitochondrial genomes were similar in terms of their general architecture, gene content and presence of a large repeat region. However, gene order was poorly conserved. Characteristic features of cryptophyte mtDNAs included large syntenic clusters resembling α-proteobacterial operons that encode bacteria-like rRNAs, tRNAs, and ribosomal protein genes. The cryptophyte mitochondrial genomes retain almost all genes found in many other eukaryotes including the nad, sdh, cox, cob, and atp genes, with the exception of sdh2 and atp3. In addition, gene cluster analysis showed that cryptophytes possess a gene order closely resembling the jakobid flagellates Jakoba and Reclinomonas. Interestingly, the cox1 gene of R. salina, T. amphioxeia, and Storeatula species was found to contain group II introns encoding a reverse transcriptase protein, as did the cob gene of Storeatula species CCMP1868. CONCLUSIONS: These newly sequenced genomes increase the breadth of data available from algae and will aid in the identification of general trends in mitochondrial genome evolution. While most of the genomes were highly conserved, extensive gene arrangements have shuffled gene order, perhaps due to genome rearrangements associated with hairpin-containing mobile genetic elements, tRNAs with palindromic sequences, and tandem repeat sequences. The cox1 and cob gene sequences suggest that introns have recently been acquired during cryptophyte evolution. Comparison of phylogenetic trees based on plastid and mitochondrial genome data sets underscore the different evolutionary histories of the host and endosymbiont components of present-day cryptophytes.


Assuntos
Criptófitas/genética , Genoma Mitocondrial/genética , Genômica , Sequências Repetitivas Dispersas/genética , Rearranjo Gênico , Filogenia
18.
Mol Biol Evol ; 34(9): 2355-2366, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28549159

RESUMO

Nonphotosynthetic plastids retain important biological functions and are indispensable for cell viability. However, the detailed processes underlying the loss of plastidal functions other than photosynthesis remain to be fully understood. In this study, we used transcriptomics, subcellular localization, and phylogenetic analyses to characterize the biochemical complexity of the nonphotosynthetic plastids of the apochlorotic diatom Nitzschia sp. NIES-3581. We found that these plastids have lost isopentenyl pyrophosphate biosynthesis and ribulose-1,5-bisphosphate carboxylase/oxygenase-based carbon fixation but have retained various proteins for other metabolic pathways, including amino acid biosynthesis, and a portion of the Calvin-Benson cycle comprised only of glycolysis/gluconeogenesis and the reductive pentose phosphate pathway (rPPP). While most genes for plastid proteins involved in these reactions appear to be phylogenetically related to plastid-targeted proteins found in photosynthetic relatives, we also identified a gene that most likely originated from a cytosolic protein gene. Based on organellar metabolic reconstructions of Nitzschia sp. NIES-3581 and the presence/absence of plastid sugar phosphate transporters, we propose that plastid proteins for glycolysis, gluconeogenesis, and rPPP are retained even after the loss of photosynthesis because they feed indispensable substrates to the amino acid biosynthesis pathways of the plastid. Given the correlated retention of the enzymes for plastid glycolysis, gluconeogenesis, and rPPP and those for plastid amino acid biosynthesis pathways in distantly related nonphotosynthetic plastids and cyanobacteria, we suggest that this substrate-level link with plastid amino acid biosynthesis is a key constraint against loss of the plastid glycolysis/gluconeogenesis and rPPP proteins in multiple independent lineages of nonphotosynthetic algae/plants.


Assuntos
Diatomáceas/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Aminoácidos/biossíntese , Evolução Biológica , Citosol/metabolismo , Evolução Molecular , Perfilação da Expressão Gênica/métodos , Fotossíntese/genética , Filogenia , Plantas/genética
19.
IUBMB Life ; 70(12): 1267-1274, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30291814

RESUMO

The mitochondrial DNA of diplonemid and kinetoplastid protists is known for its suite of bizarre features, including the presence of concatenated circular molecules, extensive trans-splicing and various forms of RNA editing. Here we report on the existence of another remarkable characteristic: hyper-inflated DNA content. We estimated the total amount of mitochondrial DNA in four kinetoplastid species (Trypanosoma brucei, Trypanoplasma borreli, Cryptobia helicis, and Perkinsela sp.) and the diplonemid Diplonema papillatum. Staining with 4',6-diamidino-2-phenylindole and RedDot1 followed by color deconvolution and quantification revealed massive inflation in the total amount of DNA in their organelles. This was further confirmed by electron microscopy. The most extreme case is the ∼260 Mbp of DNA in the mitochondrion of Diplonema, which greatly exceeds that in its nucleus; this is, to our knowledge, the largest amount of DNA described in any organelle. Perkinsela sp. has a total mitochondrial DNA content ~6.6× greater than its nuclear genome. This mass of DNA occupies most of the volume of the Perkinsela cell, despite the fact that it contains only six protein-coding genes. Why so much DNA? We propose that these bloated mitochondrial DNAs accumulated by a ratchet-like process. Despite their excessive nature, the synthesis and maintenance of these mtDNAs must incur a relatively low cost, considering that diplonemids are one of the most ubiquitous and speciose protist groups in the ocean. © 2018 IUBMB Life, 70(12):1267-1274, 2018.


Assuntos
DNA Mitocondrial/genética , Euglenozoários/genética , Kinetoplastida/genética , Mitocôndrias/genética , DNA Mitocondrial/isolamento & purificação , DNA Mitocondrial/ultraestrutura , Filogenia , Trans-Splicing/genética
20.
New Phytol ; 217(4): 1428-1434, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29318635

RESUMO

Contents Summary 1428 I. The singularity of plant terrestrialization 1428 II. Adaptation vs exaptation - what shaped the land plant toolkit? 1430 III. Trait mosaicism in (higher-branching) streptophyte algae 1431 IV. CONCLUSIONS: a streptophyte algal perspective on land plant trait evolution 1432 Acknowledgements 1432 ORCID 1433 References 1433 SUMMARY: Photosynthetic eukaryotes thrive anywhere there is sunlight and water. But while such organisms are exceptionally diverse in form and function, only one phototrophic lineage succeeded in rising above its substrate: the land plants (embryophytes). Molecular phylogenetic data show that land plants evolved from streptophyte algae most closely related to extant Zygnematophyceae, and one of the principal aims of plant evolutionary biology is to uncover the key features of such algae that enabled this important transition. At the present time, however, mosaic and reductive evolution blur our picture of the closest algal ancestors of plants. Here we discuss recent progress and problems in inferring the biology of the algal progenitor of the terrestrial photosynthetic macrobiome.


Assuntos
Evolução Biológica , Embriófitas/fisiologia , Adaptação Fisiológica , Microbiota , Mosaicismo , Estreptófitas/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa