Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Nature ; 464(7291): 1033-8, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20348908

RESUMO

The Périgord black truffle (Tuber melanosporum Vittad.) and the Piedmont white truffle dominate today's truffle market. The hypogeous fruiting body of T. melanosporum is a gastronomic delicacy produced by an ectomycorrhizal symbiont endemic to calcareous soils in southern Europe. The worldwide demand for this truffle has fuelled intense efforts at cultivation. Identification of processes that condition and trigger fruit body and symbiosis formation, ultimately leading to efficient crop production, will be facilitated by a thorough analysis of truffle genomic traits. In the ectomycorrhizal Laccaria bicolor, the expansion of gene families may have acted as a 'symbiosis toolbox'. This feature may however reflect evolution of this particular taxon and not a general trait shared by all ectomycorrhizal species. To get a better understanding of the biology and evolution of the ectomycorrhizal symbiosis, we report here the sequence of the haploid genome of T. melanosporum, which at approximately 125 megabases is the largest and most complex fungal genome sequenced so far. This expansion results from a proliferation of transposable elements accounting for approximately 58% of the genome. In contrast, this genome only contains approximately 7,500 protein-coding genes with very rare multigene families. It lacks large sets of carbohydrate cleaving enzymes, but a few of them involved in degradation of plant cell walls are induced in symbiotic tissues. The latter feature and the upregulation of genes encoding for lipases and multicopper oxidases suggest that T. melanosporum degrades its host cell walls during colonization. Symbiosis induces an increased expression of carbohydrate and amino acid transporters in both L. bicolor and T. melanosporum, but the comparison of genomic traits in the two ectomycorrhizal fungi showed that genetic predispositions for symbiosis-'the symbiosis toolbox'-evolved along different ways in ascomycetes and basidiomycetes.


Assuntos
Ascomicetos/genética , Evolução Molecular , Genoma Fúngico/genética , Simbiose/genética , Carboidratos , Elementos de DNA Transponíveis/genética , Carpóforos/metabolismo , Genes Fúngicos/genética , Genômica , Haploidia , Dados de Sequência Molecular , Análise de Sequência de DNA , Enxofre/metabolismo
2.
Plant Cell ; 23(8): 3070-81, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21821776

RESUMO

Saponins, a group of glycosidic compounds present in several plant species, have aglycone moieties that are formed using triterpenoid or steroidal skeletons. In spite of their importance as antimicrobial compounds and their possible benefits for human health, knowledge of the genetic control of saponin biosynthesis is still poorly understood. In the Medicago genus, the hemolytic activity of saponins is related to the nature of their aglycone moieties. We have identified a cytochrome P450 gene (CYP716A12) involved in saponin synthesis in Medicago truncatula using a combined genetic and biochemical approach. Genetic loss-of-function analysis and complementation studies showed that CYP716A12 is responsible for an early step in the saponin biosynthetic pathway. Mutants in CYP716A12 were unable to produce hemolytic saponins and only synthetized soyasaponins, and were thus named lacking hemolytic activity (lha). In vitro enzymatic activity assays indicate that CYP716A12 catalyzes the oxidation of ß-amyrin and erythrodiol at the C-28 position, yielding oleanolic acid. Transcriptome changes in the lha mutant showed a modulation in the main steps of triterpenic saponin biosynthetic pathway: squalene cyclization, ß-amyrin oxidation, and glycosylation. The analysis of CYP716A12 expression in planta is reported together with the sapogenin content in different tissues and stages. This article provides evidence for CYP716A12 being a key gene in hemolytic saponin biosynthesis.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Medicago truncatula/enzimologia , Medicago truncatula/genética , Saponinas/biossíntese , Animais , Sequência de Bases , Bovinos , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/isolamento & purificação , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Glicosilação , Hemolíticos/metabolismo , Humanos , Medicago truncatula/metabolismo , Dados de Sequência Molecular , Mutação , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/metabolismo , Oxirredução , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sapogeninas/metabolismo , Saponinas/genética , Saponinas/metabolismo , Transcriptoma
3.
Plant J ; 61(5): 782-91, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20030752

RESUMO

Seed storage proteins accumulate either in the endoplasmic reticulum (ER) or in vacuoles, and it would appear that polymerization events play a fundamental role in regulating the choice between the two destinies of these proteins. We previously showed that a fusion between the Phaseolus vulgaris vacuolar storage protein phaseolin and the N-terminal half of the Zea mays prolamin gamma-zein forms interchain disulfide bonds that facilitate the formation of ER-located protein bodies. Wild-type phaseolin does not contain cysteine residues, and assembles into soluble trimers that transiently polymerize before sorting to the vacuole. These transient interactions are abolished when the C-terminal vacuolar sorting signal AFVY is deleted, indicating that they play a role in vacuolar sorting. We reasoned that if the phaseolin interactions directly involve the C terminus of the polypeptide, a cysteine residue introduced into this region could stabilize these transient interactions. Biochemical studies of two mutated phaseolin proteins in which a single cysteine residue was inserted at the C terminus, in the presence (PHSL*) or absence (Delta 418*) of the vacuolar signal AFVY, revealed that these mutated proteins form disulphide bonds. PHSL* had reduced protein solubility and a vacuolar trafficking delay with respect to wild-type protein. Moreover, Delta 418* was in part redirected to the vacuole. Our experiments strongly support the idea that vacuolar delivery of phaseolin is promoted very early in the sorting process, when polypeptides are still contained within the ER, by homotypic interactions.


Assuntos
Proteínas de Plantas/química , Sinais Direcionadores de Proteínas , Vacúolos/metabolismo , Motivos de Aminoácidos , Mutação , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Engenharia de Proteínas , Dobramento de Proteína , Transporte Proteico , Nicotiana/química , Nicotiana/genética , Transformação Genética
4.
New Phytol ; 189(3): 723-735, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20964691

RESUMO

• In light of the recent finding that Tuber melanosporum, the ectomycorrhizal ascomycete that produces the most highly prized black truffles, is a heterothallic species, we monitored the spatial distribution of strains with opposite mating types (MAT) in a natural truffle ground and followed strain dynamics in artificially inoculated host plants grown under controlled conditions. • In a natural truffle ground, ectomycorrhizas (ECMs), soil samples and fruit bodies were sampled and genotyped to determine mating types. Simple sequence repeat (SSR) markers were also used to fingerprint ECMs and fruit bodies. The ECMs from nursery-inoculated host plants were analysed for mating type at 6 months and 19 months post-inoculation. • In open-field conditions, all ECMs from the same sampling site showed an identical mating type and an identical haploid genotype, based on SSR analysis. Interestingly, the gleba of fruit bodies always demonstrated the same genotype as the surrounding ECMs. Although root tips from nursery-grown plants initially developed ECMs of both mating types, a dominance of ECMs of the same MAT were found after several months. • The present study deepens our understanding of the vegetative and sexual propagation modes of T. melanosporum. These results are highly relevant for truffle cultivation.


Assuntos
Ascomicetos/genética , Genes Fúngicos Tipo Acasalamento , Variação Genética , Genoma Fúngico , Genótipo , Micorrizas/genética , Betulaceae/microbiologia , Biodiversidade , Carpóforos , Haploidia , Quercus/microbiologia , Sequências Repetitivas de Ácido Nucleico , Microbiologia do Solo
5.
New Phytol ; 189(3): 710-722, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20961294

RESUMO

• The genome of Tuber melanosporum has recently been sequenced. Here, we used this information to identify genes involved in the reproductive processes of this edible fungus. The sequenced strain (Mel28) possesses only one of the two master genes required for mating, that is, the gene that codes for the high mobility group (HMG) transcription factor (MAT1-2-1), whereas it lacks the gene that codes for the protein containing the α-box- domain (MAT1-1-1), suggesting that this fungus is heterothallic. • A PCR-based approach was initially employed to screen truffles for the presence of the MAT1-2-1 gene and amplify the conserved regions flanking the mating type (MAT) locus. The MAT1-1-1 gene was finally identified using primers designed from the conserved regions of strains that lack the MAT1-2-1 gene. • Mating type-specific primer pairs were developed to screen asci and gleba from truffles of different origins and to genotype single ascospores within the asci. These analyses provided definitive evidence that T. melanosporum is a heterothallic species with a MAT locus that is organized similarly to those of ancient fungal lineages. • A greater understanding of the reproductive mechanisms that exist in Tuber spp. allows for optimization of truffle plantation management strategies.


Assuntos
Ascomicetos/genética , Genes Fúngicos , Genes Fúngicos Tipo Acasalamento , Primers do DNA , Reprodução/genética , Simbiose/genética
6.
J Exp Bot ; 62(3): 1189-200, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21041370

RESUMO

Proanthocyanidins (PAs) are agronomically important biopolymers in higher plants composed primarily of catechin and epicatechin units. The biosynthesis of these natural products is regulated by transcription factors including proteins of the R2R3MYB class. To gain insight into the genetic control of the catechin and epicatechin branches of the PA pathway in forage legumes, here the effects of the expression of FaMYB1, a flavonoid R2R3MYB repressor from strawberry, in Lotus corniculatus (birdsfoot trefoil), were tested. It was found that in leaves of T(0) transgenic lines the degree of PA inhibition correlated with the level of FaMYB1 expression. These effects were heritable in the transgene-positive plant T(1) generation and were tissue specific as the suppression of proanthocyanidin biosynthesis was most pronounced in mesophyll cells within the leaf, whereas other flavonoid and phenolic compounds were substantially unaltered. The data suggest that FaMYB1 may counter-balance the activity of the endogenous transcriptional MYB-bHLH-WD40 (MBW) complex promoting proanthocyanidin biosynthesis via the catechin and epicatechin branches and that FaMYB1 does not interfere with the expression levels of a resident R2R3MYB activator of PAs. It is proposed that in forage legumes leaf cell commitment to synthesize proanthocyanidins relies on the balance between the activity of activator and repressor MYBs operating within the MBW complex.


Assuntos
Regulação para Baixo , Fragaria/genética , Lotus/metabolismo , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Proantocianidinas/biossíntese , Fatores de Transcrição/metabolismo , Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lotus/genética , Folhas de Planta/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética
7.
Mycorrhiza ; 21(1): 17-25, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20349093

RESUMO

Belowground ectomycorrhizal communities are often species rich. Characterization of the ectomycorrhizas (ECMs) underneath native truffle areas and/or cultivation sites is particularly relevant to identifying fungal species that might interfere with or promote truffle propagation and fruiting. Fungal identification at the genus/species level can now be achieved by combining detailed morphological and anatomical descriptions with molecular approaches. In a survey of the mycorrhizal biodiversity of Tuber melanosporum orchards and inoculated host plants in nurseries, we repeatedly sampled ECMs with morphological features resembling those of the ECMs widely known as the AD type. Despite the fact that the AD type is regarded as one of the most competitive fungal species towards Tuber spp., its taxonomical rank has yet to be resolved. By analyzing the 28S and internal transcribed spacer (ITS) rDNA regions, here, we show that AD-type ECMs result from host plant colonization by the pyronemataceous species Trichophaea woolhopeia. Further to this, the 28S and ITS phylogenetic trees built from the AD-type ECMs analyzed sustain the hypothesis that T. woolhopeia is a species complex.


Assuntos
Ascomicetos/classificação , Ascomicetos/crescimento & desenvolvimento , Biodiversidade , Micorrizas/classificação , Micorrizas/crescimento & desenvolvimento , Análise por Conglomerados , DNA Fúngico/química , DNA Fúngico/genética , DNA Ribossômico/química , DNA Ribossômico/genética , DNA Espaçador Ribossômico/química , DNA Espaçador Ribossômico/genética , Genes de RNAr , Dados de Sequência Molecular , Micorrizas/genética , Filogenia , RNA Fúngico/genética , RNA Ribossômico 28S/genética , Análise de Sequência de DNA
8.
J Exp Bot ; 61(6): 1869-83, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20231327

RESUMO

Apomixis is defined as clonal reproduction by seed. A comparative transcriptomic analysis was undertaken between apomictic and sexual genotypes of Paspalum simplex Morong to identify apomixis-related polymorphisms at the level of mRNA. cDNA-AFLP (amplified fragment length polymorphism) profiling of apomictic and sexual flowers at several stages of development yielded 202 amplicons that showed several kinds of expression specificities. Among these, the large majority consisted of amplicons that were present only in specific stages of development of the apomictic flowers. Ten percent of polymorphic amplicons were present with almost identical intensity in all stages of the apomictic flowers and never in the sexual flowers. Reverse transcription-PCR (RT-PCR) and Southern analyses of these amplicons showed that they belong to constitutively expressed alleles that are specifically present on the apomixis-controlling locus of P. simplex. The most frequent biological functions inferred from the sequence homology of the apomixis-linked alleles were related to signal transduction and nucleic acid/protein-binding activities. Most of these apomixis-linked alleles showed nonsense and frameshift mutations, revealing their probable pseudogene nature. None of the amplicons that were present only in specific stages of development of the apomictic flowers co-segregated with apomixis, indicating they did not originate from additional apomictic alleles but more probably from differential regulation of the same allele in apomictic and sexual flowers. The molecular functions inferred from sequence analysis of these latter amplicons were related to seed storage protein and regulatory genes of various types. The results are discussed regarding the possible role in apomictic reproduction of the differentially expressed genes in relation to their specificity of expression and inferred molecular functions.


Assuntos
Flores/genética , Paspalum/genética , Sementes/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , Southern Blotting , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
New Phytol ; 180(2): 466-478, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18643942

RESUMO

Tuber melanosporum is an ectomycorrhizal ascomycete producing edible ascocarps. The prevalent view is that this species strictly selfs, since genetic analyses have never detected heterozygotic profiles in its putatively diploid/dikaryotic gleba. The selfing model has also forged the experimental approaches to assess the population genetic variability. Here, the hypothesis that T. melanosporum outcrosses was tested. To this end, SSR (simple sequence repeats) and ITS (internal transcribed spacer) markers were employed to fingerprint asci and the surrounding gleba within single ascocarps. The distribution of genetic variability was also investigated at different geographical levels using single (SSR and ITS) and multilocus (AFLP, amplified fragment length polymorphism) markers. It is shown that T. melanosporum outcrosses since asci display additional alleles besides those present in the surrounding, uniparental, gleba. Furthermore, SSR and AFLP data reveal a high rate of intrapopulation diversity within samples from the same ground and root apparatus and the highest rate of genetic variability within the southernmost populations of the distributional range. These data call for a profound re-examination of T. melanosporum mating system, life cycle and strategies for managing man-made plantations. They also strongly support the idea that the last glaciation restricted the species distribution to the Italian and Spanish peninsulas.


Assuntos
Ascomicetos/genética , Cruzamentos Genéticos , DNA Fúngico , Variação Genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados/métodos , DNA Intergênico , DNA Ribossômico , Genética Populacional , Haplótipos , Endogamia , Repetições Minissatélites , Micorrizas/genética , Polimorfismo de Nucleotídeo Único , Reprodução/genética
10.
J Exp Bot ; 59(10): 2815-29, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18540021

RESUMO

Protein bodies (PB) are stable polymers naturally formed by certain seed storage proteins within the endoplasmic reticulum (ER). The human immunodeficiency virus negative factor (Nef) protein, a potential antigen for the development of an anti-viral vaccine, is highly unstable when introduced into the plant secretory pathway, probably because of folding defects in the ER environment. The aim of this study was to promote the formation of Nef-containing PB in tobacco (Nicotiana tabacum) leaves by fusing the Nef sequence to the N-terminal domains of the maize storage protein gamma-zein or to the chimeric protein zeolin (which efficiently forms PB and is composed of the vacuolar storage protein phaseolin fused to the N-terminal domains of gamma-zein). Protein blots and pulse-chase indicate that fusions between Nef and the same gamma-zein domains present in zeolin are degraded by ER quality control. Consistently, a mutated zeolin, in which wild-type phaseolin was substituted with a defective version known to be degraded by ER quality control, is unstable in plant cells. Fusion of Nef to the entire zeolin sequence instead allows the formation of PB detectable by electron microscopy and subcellular fractionation, leading to zeolin-Nef accumulation higher than 1% of total soluble protein, consistently reproduced in independent transgenic plants. It is concluded that zeolin, but not its gamma-zein portion, has a positive dominant effect over ER quality control degradation. These results provide insights into the requirements for PB formation and avoidance of quality-control degradation, and indicate a strategy for enhancing foreign protein accumulation in plants.


Assuntos
Antígenos Virais/metabolismo , Corpos de Inclusão/metabolismo , Nicotiana/metabolismo , Folhas de Planta/metabolismo , Engenharia de Proteínas , Zeína/metabolismo , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Antígenos Virais/química , Antígenos Virais/genética , Expressão Gênica , Humanos , Corpos de Inclusão/química , Corpos de Inclusão/genética , Dados de Sequência Molecular , Folhas de Planta/química , Folhas de Planta/genética , Plantas Geneticamente Modificadas/química , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/química , Nicotiana/genética , Zea mays/genética , Zeína/química , Zeína/genética , Produtos do Gene nef do Vírus da Imunodeficiência Humana/química , Produtos do Gene nef do Vírus da Imunodeficiência Humana/genética
11.
J Biotechnol ; 131(2): 97-105, 2007 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-17659801

RESUMO

Several strategies have been exploited to maximize heterologous protein accumulation in the plant cell. Recently, it has been shown that a portion of a maize prolamin storage protein, gamma-zein, can be used for the high accumulation of a recombinant protein in novel endoplasmic reticulum (ER)-derived protein bodies of vegetative tissues. In this study, we investigate whether this protein can be expressed in the chloroplast. Our long-term purpose is to use zeolin to produce value-added proteins by fusing these polypeptides with its gamma-zein portion and targeting the recombinant proteins to the ER or to the chloroplast. We show here that zeolin accumulates in the chloroplast to lower levels than in the ER and its stability is compromised by chloroplast proteolytic activity. Co-localization of zeolin and the ER chaperone BiP in the chloroplast does not have a beneficial effect on zeolin accumulation. In this organelle, zeolin is not stored in protein bodies, nor do zeolin polypeptides seem to be linked by inter-chain disulfide bonds, which are usually formed by the six cysteine of the gamma-zein portion, indicating abnormal folding of the recombinant protein. Therefore, it is concluded that to accumulate zeolin in the chloroplast it is necessary to facilitate inter-chain disulfide bond formation.


Assuntos
Cloroplastos/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/fisiologia , Zeína/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Desnaturação Proteica , Dobramento de Proteína , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Solubilidade , Nicotiana/genética , Transgenes , Zeína/química , Zeína/genética
12.
FEMS Microbiol Lett ; 235(1): 109-15, 2004 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15158269

RESUMO

Tuber spp. are ectomycorrhizal fungi that establish symbioses with shrubs and trees. Because of their different smell and taste, Tuber uncinatum and Tuber aestivum are two truffle morphotypes with a different market value, but whether or not T. uncinatum and T. aestivum are different taxa is still an open debate among mycologists. In order to identify molecular keys characterizing both T. aestivum and T. uncinatum morphotypes, ITS/RFLPs analyses were carried out on a large collection of samples from all over Italy and from other European countries, followed by a study of the phylogenesis of ITS, beta-tubulin and EF 1-alpha genes, on representative samples. The present study provides compelling evidence that: (i) T. uncinatum and T. aestivum belong to the same species, (ii) neither morphotype presents a specific molecular fingerprint, but they may even share identical alleles at any of the loci analysed; (iii) T. aestivum is most likely under a selfing reproductive mode. Our findings suggest that ecological, rather than genetic causes may account for differences in sporal morphology, taste and smell between T. aestivum and T. uncinatum truffles.


Assuntos
Ascomicetos/classificação , Ascomicetos/citologia , Ascomicetos/genética , DNA Fúngico/análise , Haplótipos , Fator 1 de Elongação de Peptídeos/genética , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Análise de Sequência de DNA , Esporos Fúngicos/citologia , Tubulina (Proteína)/genética
13.
Methods Mol Biol ; 1069: 101-18, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23996312

RESUMO

Medicago truncatula is one of the model species for legume molecular genetics. In the last decade different types of mutant populations have been created in this species that can be screened by forward and reverse-genetic approaches to identify and functionally characterize genes of interest. TILLING is a reverse-genetic method combining random chemical mutagenesis and a PCR-based screen to identify point mutations in regions of interest. The different steps of the TILLING analysis are described in a mutant collection of ~2,300 M2 individuals for which genomic DNA and M3 seed were obtained. A two-dimensional DNA pooling strategy was adopted to reduce the number of PCR reactions necessary to screen the collection and to unambigously identify the individual M2 plant carrying the mutation. The genotypic and phenotypic analyses of the mutant M3 progeny provide the possibility to study the gene function. In spite of its reduced size, this mutant collection has proved valid in the study of the biosynthetic pathway of a class of secondary metabolites present in the genus Medicago, the triterpenic saponins.


Assuntos
Medicago truncatula/genética , Mutagênese , Mutação , Genoma de Planta , Genótipo , Medicago truncatula/crescimento & desenvolvimento , Fenótipo , Reação em Cadeia da Polimerase/métodos , Genética Reversa
14.
Artif DNA PNA XNA ; 3(2): 63-72, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22772038

RESUMO

PNA probes for the specific detection of DNA from olive oil samples by microarray technology were developed. The presence of as low as 5% refined hazelnut (Corylus avellana) oil in extra-virgin olive oil (Olea europaea L.) could be detected by using a PNA microarray. A set of two single nucleotide polymorphisms (SNPs) from the Actin gene of Olive was chosen as a model for evaluating the ability of PNA probes for discriminating olive cultivars. Both unmodified and C2-modified PNAs bearing an arginine side-chain were used, the latter showing higher sequence specificity. DNA extracted from leaves of three different cultivars (Ogliarola leccese, Canino and Frantoio) could be easily discriminated using a microarray with unmodified PNA probes, whereas discrimination of DNA from oil samples was more challenging, and could be obtained only by using chiral PNA probes.


Assuntos
DNA de Plantas/análise , DNA de Plantas/genética , Olea/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Ácidos Nucleicos Peptídicos/análise , Folhas de Planta/genética , Óleos de Plantas/química , Corylus/química , Corylus/genética , Contaminação de Alimentos/análise , Azeite de Oliva , Ácidos Nucleicos Peptídicos/genética , Polimorfismo de Nucleotídeo Único , Especificidade por Substrato
15.
Transgenic Res ; 18(1): 17-30, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18551377

RESUMO

It is very important for the application of chloroplast engineering to extend the range of species in which this technology can be achieved. Here, we describe the development of a chloroplast transformation system for the sugar beet (Beta vulgaris L. ssp. vulgaris, Sugar Beet Group) by biolistic bombardment of leaf petioles. Homoplasmic plastid-transformed plants of breeding line Z025 were obtained. Transformation was achieved using a vector that targets genes to the rrn16/rps12 intergenic region of the sugar beet plastome, employing the aadA gene as a selectable marker against spectinomycin and the gfp gene for visual screening of plastid transformants. gfp gene transcription and protein expression were shown in transplastomic plants. Detection of GFP in Comassie blue-stained gels suggested high GFP levels. Microscopy revealed GFP fluorescence within the chloroplasts. Our results demonstrate the feasibility of engineering the sugar beet chloroplast genome; this technology provides new opportunities for the genetic improvement of this crop and for social acceptance of genetically modified sugar beet plants.


Assuntos
Beta vulgaris/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Plantas/genética , Plastídeos/genética , Transformação Genética , Transgenes/fisiologia , Western Blotting , Cloroplastos , DNA de Plantas/genética , Engenharia Genética , Marcadores Genéticos , Vetores Genéticos , Germinação , Plantas Geneticamente Modificadas , Sementes/química , Sementes/genética
16.
Mol Plant ; 1(6): 1067-76, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19825604

RESUMO

The correct folding and assembly of newly synthesized secretory proteins are monitored by the protein quality control system of the endoplasmic reticulum (ER). Through interactions with chaperones such as the binding protein (BiP) and other folding helpers, quality control favors productive folding and sorts for degradation defective proteins. A major route for quality control degradation identified in yeast, plants, and animals is constituted by retrotranslocation from the ER to the cytosol and subsequent disposal by the ubiquitin/proteasome system, but alternative routes involving the vacuole have been identified in yeast. In this study, we have studied the destiny of sGFP418, a fusion between a secretory form of GFP and a domain of the vacuolar protein phaseolin that is involved in the correct assembly of phaseolin and in BiP recognition of unassembled subunits. We show that sGFP418, despite lacking the phaseolin vacuolar sorting signal, is delivered to the vacuole and fragmented, in a process that is inhibited by the secretory traffic inhibitor brefeldin A. Moreover, a fusion between GFP and a domain of the maize storage protein gamma-zein involved in zein polymerization also undergoes post-translational fragmentation similar to that of sGFP418. These results show that defective secretory proteins with permanently exposed sequences normally involved in oligomerization can be delivered to the vacuole by secretory traffic. This strongly suggests the existence of a plant vacuolar sorting mechanism devoted to the disposal of defective secretory proteins.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Nicotiana/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes de Fusão/metabolismo , Vacúolos/metabolismo , Brefeldina A/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Relação Estrutura-Atividade , Nicotiana/efeitos dos fármacos , Vacúolos/efeitos dos fármacos , Zeína/química , Zeína/metabolismo
17.
Plant Signal Behav ; 3(5): 340-1, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-19841665

RESUMO

A network of shared intermediates/components and/or common molecular outputs in biotic and abiotic stress signaling has long been known, but the possibility of effective influence between differently triggered stresses (co-protection) is less studied. Recent observations show that wounding induces transient protection in tomato (Solanum lycopersicum L.) to four pathogens with a range of lifestyles, locally and systemically. The contribution of ethylene (ET) in basal but also in wound-induced resistance to each pathogen, although dispensable, is demonstrated to be positive (Botrytis cinerea, Phytophthora capsici) or negative (Fusarium oxysporum, Pseudomonas syringae pv. tomato). Furthermore, the expression of several defense markers is influenced locally and/or systemically by wounding and ET, and might be part of that core of conserved molecular responses whereby an abiotic stress such as wounding imparts co-resistance to biotic stress. In this addendum, we speculate on some of the physiological responses to wounding that might contribute to the modulation of resistance in a more pathogen-specific manner.

18.
Curr Genet ; 53(1): 23-34, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17972080

RESUMO

Retrotransposons are suitable targets for developing molecular markers for population genetics studies. Transposable elements have not yet been isolated from ectomycorrhizal fungi of the genus Tuber. In this paper, we report on the isolation and characterization of Tmt1, an LTR-retrotransposon from Tuber melanosporum. The Tmt1 sequence shows relatedness to Ty3/gypsy retrotransposons from which it differentiates for the presence of a dUTPase extra-domain between protease and reverse transcriptase. Phylogenetic analyses suggest a horizontal transfer of the dUTPase gene (dut) from a fungal host genome. The presence of non-identical LTRs and degenerate ORFs substantiate an ancient integration of Tmt1 in T. melanosporum genome. Furthermore, transcripts analyses proved an inactive status of Tmt1, whereas Southern analysis showed that Tmt1 is a repetitive T. melanosporum species-specific element. Tmt1-based markers will help us to gain more insights into population biology in this fungal species.


Assuntos
Ascomicetos/genética , DNA Fúngico/isolamento & purificação , Retroelementos/genética , Elementos de DNA Transponíveis/genética , DNA Fúngico/classificação , Marcadores Genéticos , Genoma Fúngico/genética , Dados de Sequência Molecular , Filogenia , Pirofosfatases/genética , DNA Polimerase Dirigida por RNA/genética , Alinhamento de Sequência , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Sequências Repetidas Terminais
19.
BMC Res Notes ; 1: 129, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-19077311

RESUMO

BACKGROUND: Medicago truncatula is a model species for legumes. Its functional genomics have been considerably boosted in recent years due to initiatives based both in Europe and US. Collections of mutants are becoming increasingly available and this will help unravel the genetic control of important traits for many species of legumes. FINDINGS: Our report is on the production of three complementary mutant collections of the model species Medicago truncatula produced in Italy in the frame of a national genomic initiative. Well established strategies were used: Tnt1 mutagenesis, TILLING and activation tagging. Both forward and reverse genetics screenings proved the efficiency of the mutagenesis approaches adopted, enabling the isolation of interesting mutants which are in course of characterization. We anticipate that the reported collections will be complementary to the recently established functional genomics tools developed for Medicago truncatula both in Europe and in the United States.

20.
Plant Physiol ; 143(1): 504-16, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17098849

RESUMO

Proanthocyanidins (PAs) are plant secondary metabolites and are composed primarily of catechin and epicatechin units in higher plant species. Due to the ability of PAs to bind reversibly with plant proteins to improve digestion and reduce bloat, engineering this pathway in leaves is a major goal for forage breeders. Here, we report the cloning and expression analysis of anthocyanidin reductase (ANR) and leucoanthocyanidin 4-reductase (LAR), two genes encoding enzymes committed to epicatechin and catechin biosynthesis, respectively, in Lotus corniculatus. We show the presence of two LAR gene families (LAR1 and LAR2) and that the steady-state levels of ANR and LAR1 genes correlate with the levels of PAs in leaves of wild-type and transgenic plants. Interestingly, ANR and LAR1, but not LAR2, genes produced active proteins following heterologous expression in Escherichia coli and are affected by the same basic helix-loop-helix transcription factor that promotes PA accumulation in cells of palisade and spongy mesophyll. This study provides direct evidence that the same subclass of transcription factors can mediate the expression of the structural genes of both branches of PA biosynthesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Lotus/genética , Oxirredutases/genética , Proteínas de Plantas/genética , Proantocianidinas/biossíntese , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Southern Blotting , Clonagem Molecular , DNA Complementar/química , Regulação da Expressão Gênica de Plantas , Lotus/enzimologia , Lotus/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Proantocianidinas/análise , Proantocianidinas/química , Transdução de Sinais , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa